
Unsupervised Learning of
Correspondence Relations in

Image Streams

Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich Informatik und Mathematik der
Johann Wolfgang Goethe – Universität

in Frankfurt am Main

von

Christian Conrad

aus Künzelsau

Frankfurt 2017

(D30)



vom Fachbereich Informatik und Mathematik
der Johann Wolfgang Goethe – Universität
als Dissertation angenommen.

Dekan: Prof. Dr. rer. nat. Uwe Brinkschulte

Gutachter: Prof. Dr.-Ing. Rudolf Mester

Prof. Roland Memisevic, Ph.D.

Datum der Disputation: 18. Januar 2017



für Andrea, Paula, Julian und Maximilian



c© 2017 CHRISTIAN CONRAD ALL RIGHTS RESERVED



Zusammenfassung

Die vorliegende Arbeit stellt Ansätze zum automatisierten und nicht überwachten Ler-
nen von Korrespondenzbeziehungen zwischen Paaren von langen Bildströmen vor. Die
Grundlage bildet dabei das sogenannte Korrespondenzproblem, d.h. die Identifizierung
von 2-D Bildpunkten, die die Projektion desselben 3-D Weltpunktes darstellen. Das Kor-
respondenzproblem kann sowohl lokal als auch global betrachtet werden. Im lokalen Fall
ist das Ziel, einzelne Paare von korrespondierenden Bildpunkten (Pixel) zu bestimmen.
Im globalen Fall wird eine globale Transformation gesucht, die das Korrespondenzpro-
blem für alle Pixel gleichzeitig löst.

Das Korrespondenzproblem ist das grundlegende Problem vieler Aufgaben im Be-
reich der Low-Level Vision, insbesondere in der Stereo- und Bewegungsanalyse. Wie
in biologischen Systemen, ist auch in technischen Systemen die Fähigkeit zur Tiefen-
und Bewegungswahrnehmung essentiell. Sie erlaubt u.a. Rückschlüsse auf die Distanz zu
Objekten und deren Größe zu ziehen, erlaubt die Bewegung von Objekten zu erkennen
und diese zu verfolgen.

In den klassischen technischen Ansätzen zur Lösung des Korrespondenzproblems wer-
den Verfahren eingesetzt, die die gesuchten Korrespondenzen auf Basis einer Rechenvor-
schrift bestimmen. Sie erklären aber nicht, wie Korrespondenzbeziehungen automatisch
und nicht überwacht gelernt werden können. Das automatisierte Lernen von Korrespon-
denzen ist nicht nur aus theoretischer Sicht interessant. In größer und komplexer werden-
den Bildverarbeitungssystemen wird es zunehmend wichtig, dass sich einzelne Module ei-
genständig kalibrieren können und lernen, welche Eingabedaten als typisch und atypisch
zu betrachten sind. Beispielsweise sind Kameranetzwerke besonders aufwändig zu kali-
brieren und durch Menschen zu überwachen. Deshalb werden Lernansätze angestrebt,
die z.B. automatisch erkennen welche Kameras ein, in der 3-D Welt, überlappendes
Sichtfeld zeigen oder atypische Ereignisse erkennen, die von einem menschlichen Ope-
rator näher untersucht werden sollten. Eine weitere wichtige Eigenschaft ist, dass die
Systeme erkennen und signalisieren sollen, wann ihre Ausgabedaten auf Grund hoher
Unsicherheiten nicht vertrauenswürdig sind.

Lokale Korrespondenzbeziehungen Im ersten Teil der Arbeit entwickle ich den
Temporal Coincidence Analysis (TCA) Algorithmus, der es erlaubt, lokale Korrespon-
denzbeziehungen in Paaren von langen Bildströmen zu lernen. Der klassische Ansatz um
Pixel Korrespondenzen in Paaren von Bildern zu bestimmen, beruht auf der sogenann-
ten spatial feature matching pipeline. Dies ist ein dreistufiger Prozess, in dem zunächst
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markante Stellen (Keypoints) in beiden Bildern bestimmt werden. Dies geschieht auf Ba-
sis sogenannter Keypoint Detektoren. Hierbei ist das Ziel Bildstellen zu identifizieren,
die sich mit hoher Wahrscheinlichkeit im zweiten Bild wiederfinden lassen. Im zweiten
Schritt werden die Keypoints auf Basis von Deskriptoren beschrieben, die aus einer
kleinen räumlichen Nachbarschaft um den Keypoint herum extrahiert werden. Im drit-
ten Schritt werden dann Pixel Korrespondenzen bestimmt, indem die Deskriptoren aus
beiden Bildern verglichen (gematched) werden und zueinander ähnliche Deskriptoren
eine Korrespondenz definieren. In der Literatur wurde eine Vielzahl von unterschied-
lichen Keypoint Detektoren und Deskriptoren vorgestellt. Heute werden diese in einer
konkreten Applikation als Werkzeuge verwendet, um Korrespondenzen zu berechnen.
Das Vorgehen erklärt allerdings nicht, wie Korrespondenzen autonom gelernt werden
können. Zu beachten ist, dass die Pipeline immer auf einzelne Paare von Bildern ange-
wendet wird, auch wenn ein Paar von Bildströmen vorliegt.

Im Gegensatz zu den klassischen rein räumlichen Verfahren, betrachte ich in einem
Paar von Bildströmen nur die zeitliche Information einzelner Pixel. Wie beim räumlichen
Ansatz, definiere ich Keypoints bzw. Events im Zeitsignal, die dann auf Basis eines De-
skriptors gematched werden. Für eine ausgewählte Bildstelle (Seed Pixel) im ersten
Bildstrom werden Events zwischen aufeinander folgenden Zeitschritten berechnet. So-
bald ein Event detektiert wurde, werden Events im zweiten Bildstrom bestimmt und mit
dem Event am Seed Pixel verglichen. Hierbei lässt sich typischerweise noch keine Kor-
respondenz bestimmen, da eine Vielzahl von Events im zweiten Bildstrom mit dem am
Seed Pixel kompatibel sind. D.h. wir erhalten lediglich eine Menge von Korrespondenz-
kandidaten. Die Idee ist nun, diese Korrespondenzkandidaten über viele Zeitschritte zu
sammeln. Unter der Hypothese, dass die Events am Seed Pixel und dessen wahrer Kor-
respondenz fast immer gematched werden und dass alle anderen Matches rein zufällig
sind, lässt sich die gesuchte Korrespondenz nach genügend langem Lernen identifizieren.
Das TCA Verfahren beruht auf dem eben skizzierten Vorgehen.

Dabei ist TCA keine Heuristik: Ich zeige wie TCA auf Basis eines statistischen Modells
hergeleitet werden kann. In diesem Modell entspricht die Detektion und das Matchen von
zeitlichen Events einem zeitlichen Update Schema für eine Posteriori Verteilung. Diese
Verteilung nenne ich Korrespondenzverteilung. Die Korrespondenzverteilung beschreibt
dabei die mittlere Korrespondenzbeziehung, die in den gegebenen Bildströmen beob-
achtet wurde. Eine Korrespondenzverteilung und eine klassische Pixel-zu-Pixel Korre-
spondenz kodieren dieselbe Information, wenn die Tiefenstruktur der betrachteten Szene
näherungsweise statisch ist. In diesem Fall enthält die Korrespondenzverteilung einen
Peak an den Koordinaten der wahren Korrespondenz, die über die Zeit konstant ist.
Ändert sich die Tiefenstruktur in der betrachteten Szene, dann variiert die gesuchte
Korrespondenz entlang der sogenannten Epipolarlinie. In diesem Fall kann die wahre
Korrespondenz zu jedem Zeitpunkt verschieden sein und aus der gelernten mittleren
Korrespondenz kann nicht direkt auf die aktuelle Korrespondenz geschlossen werden. In
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diesem Fall entspricht die gelernte Korrespondenzverteilung also einem Prior über dem
Raum der möglichen Korrespondenzen.

Ich beschreibe Korrespondenzverteilungen auf Basis verschiedener Attribute. Diese
umfassen beispielsweise die Statistiken der Verteilung erster und zweiter Ordnung, sowie
deren Entropie. Diese Attribute erlauben es den Lernprozess zu überwachen und zu
entscheiden, wann eine Korrespondenz mit hoher Wahrscheinlichkeit gelernt werden
konnte. Dies ist dann der Fall, wenn die Entropie der Verteilung klein ist. Weiterhin
erlauben die Attribute, die Unsicherheiten in der gelernten Korrespondenz explizit in
Form einer Kovarianzmatrix zu repräsentieren und an Verfahren weiterzureichen, die
auf Basis gelernter Korrespondenzen arbeiten.

Ich zeige weiterhin, dass TCA ohne weitere Modifikationen im Skalenraum angewen-
det werden kann. Dies erlaubt Korrespondenzverteilungen zunächst auf einer groben
Auflösungsstufe zu lernen und diese dann als Prior für die nächst feinere Auflösungsstufe
zu verwenden. Dieses Vorgehen erlaubt eine wesentliche Einsparung von Speicherplatz,
der zur Bestimmung einer Korrespondenzverteilung benötigt wird.

Da zeitliche Events auf Basis von zeitlich aufeinander folgenden Grauwerten bestimmt
werden, müssen wir Helligkeitsunterschiede zwischen den betrachteten Ansichten expli-
zit in Betracht ziehen. Hierfür führe ich die Grey Value Transfer Function (GVTF)
ein, die einen beobachteten Grauwert in einer Ansicht, in den zugehörigen Grauwert
in einer zweiten Ansicht überführt. Ich approximiere die GVTF als Polynom niedriger
Ordnung und lerne dessen Parameter auf Basis von gelernten Korrespondenzen. Hierfür
bilde ich ein 2-D Histogramm (auch Komparagramm genannt) von Paaren von Grau-
werten, welche an den Stellen korrespondierender Pixel extrahiert werden. Ich zeige,
dass dieses Histogramm aber nicht explizit bestimmt werden muss. Stattdessen kann
das Histogramm implizit über einen Satz sogenannter sufficient statistics repräsentiert
werden.

Im Allgemeinen müssen wir davon ausgehen, dass eine gelernte Korrespondenz mit ei-
ner räumlichen Unsicherheit behaftet ist. Schon für kleine räumliche Unsicherheiten kann
dies das Komparagramm stark verfälschen. Deshalb betrachte ich das lokale räumliche
Signal an den Koordinaten der betrachteten Pixel und füge nur diejenigen Grauwertpaa-
re zum Komparagramm hinzu, wenn die lokalen Signale näherungsweise homogen sind.
Dies entspricht im Prinzip dem zur Keypoint Detektion entgegengesetzten Vorgehen: Es
werden nur diejenigen Grauwertpaare berücksichtigt, die nicht an Keypoint Positionen
liegen. Die Parameter der GVTF werden dann als Lösung eines Regressionsproblems im
Sinne der kleinsten Fehlerquadrate bestimmt.

Auf Basis von Simulationen belege ich zunächst die Anwendbarkeit von TCA zum
Lernen von Korrespondenzverteilungen und des GVTF Lernverfahrens. Weiterhin zeige
ich in einer Reihe von Experimenten, dass TCA in der Lage ist, lokale Korrespondenz-
beziehungen in realen Multi-Kamera Daten zu lernen. Die betrachteten Daten decken
dabei ein weites Spektrum von Multi-Kamera Szenarien ab: Dies sind sowohl statische
Setups, in denen die Kameras aus jeweils fester Position eine bewegte Szene betrachten,
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als auch dynamische Setups, in denen die Kameras selbst bewegt werden. Hierbei wird
aber angenommen, dass die relative Orientierung zwischen den Kameras gleich bleibt.
In den betrachteten Szenarien können die Kameraansichten stark gegeneinander rotiert
und verschoben sein, große Skalierungsunterschiede aufweisen und deutliche Beleuch-
tungsunterschiede zeigen.

TCA kann nicht nur in Stereo-Szenarien eingesetzt werden. In einer Reihe von Expe-
rimenten zeige ich, dass TCA in der Lage ist, Korrespondenzverteilungen in monokula-
ren Szenarien zu lernen, die den mittleren beobachteten Bewegungsfeldern entsprechen.
Hierfür wende ich TCA auf zeitlich versetzte Bildströme an, die aus einer einzelnen
Kamera stammen. Unter anderem zeige ich, dass mein Verfahren dünnbesetzte mittlere
Flussfelder lernt, die man für Bewegungen wie Geradeausfahren erwarten würde. TCA
kann ebenfalls verwendet werden, um globale Bewegungsfeldparameter wie die Roll-,
Nick- und Gierrate zu schätzen. Hierfür sammele (poole) ich im aktuellen Zeitschritt al-
le Korrespondenzkandidaten der Seed Pixel, die näherungsweise im Unendlichen liegen.

Ich erweitere das Basismodell zu einem Mischverteilungsmodell, welches aus 3 TCA
Experten und einer latenten Variablen besteht. Dabei modelliert die latente Variable
die aktuelle Bewegung (links, rechts, geradeaus). In der Trainingsphase wird die latente
Variable mithilfe des Phasenkorrelationsverfahrens (Kuglin und Hines 1975a) bestimmt.
Der aktuelle Wert der latenten Variable bestimmt dann, welcher TCA Experte trainiert
wird. Schlussendlich ergeben sich drei charakteristische mittlere Flussfelder, wie man sie
für die einzelnen Bewegungsklassen erwartet.

Ich zeige weiterhin, wie auf Basis der dünnbesetzten Flussfelder, der mittlere Fluss
an beliebigen Bildpositionen interpoliert werden kann. Hierfür definiere ich ein biqua-
dratisches Modell, dessen Parameter mithilfe der gelernten Korrespondenzverteilungen
geschätzt werden. Dabei berücksichtige ich explizit die gegebenen Unsicherheiten in
Form von Kovarianzmatrizen.

Globale Korrespondenzbeziehungen Im zweiten Teil der Arbeit stelle ich ein Ver-
fahren zum autonomen Lernen von globalen Transformationen zwischen Paaren von lan-
gen Bildströmen vor. Globale Transformationen zwischen Paaren von Bildern werden
üblicherweise mit einem parametrisierten funktionalen Modell beschrieben. Die Para-
meter des Modells werden dann auf Basis von Pixel Korrespondenzen geschätzt. Wie
schon zuvor beschrieben, werden hierfür typischerweise Keypoints berechnet und mittels
Deskriptoren gematched.

Im Gegensatz hierzu stelle ich ein Verfahren vor, welches eine globale Transforma-
tion in nicht parametrischer Form autonom bestimmen kann. Voraussetzung hierfür
ist allerdings, dass viele Bildpaare zur Verfügung stehen, die alle über dieselbe globale
Transformation verknüpft sind. Mein Ansatz basiert auf der Anwendung der Canonical
Correlation Analysis (CCA) (Hotelling 1936). Dabei extrahiert die CCA zwei Mengen
von Basisvektoren, die die gesuchte Transformation implizit kodieren. Es ist besonders
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hervorzuheben, dass mein Verfahren nicht nur die Parameter einer bekannten Transfor-
mationsklasse lernt, sondern die Transformation an sich.

Obwohl die durch die CCA gelernte Transformation nur implizit vorliegt, kann sie auf
neue, d.h. auf nicht zum Training benutzte Daten angewendet werden. Hierfür wende ich
den MMSE Schätzer aus (A. Pezeshki u. a. 2006) an. Die Anwendung der Transformation
entspricht einer linearen Transformation, allerdings können die Basisvektoren beliebige,
insbesondere auch nicht lineare Transformationen repräsentieren.

Da die gelernte Transformation nur implizit gegeben ist, lässt sich das gemeinsame
Signal, d.h. der Überlappungsbereich beider Ansichten nicht direkt ablesen. Ich zeige,
dass das gemeinsame Signal jedoch auf Basis der Canonical Correlations bestimmt wer-
den kann. Hierfür betrachte ich den Verlauf der Canonical Correlation (CC). Die CC
gibt für jedes Paar von Basisvektoren an, wie hoch die (empirische) Korrelation der auf
dieses Basisvektorpaar projizierten Daten ist. Die CC ist groß für Basisvektoren, die
im überlappenden Bereich Energie (von 0 verschiedene Faktoren) aufwenden. Die CC
bricht für diejenigen Basisvektorpaare ein, die Energie im nicht überlappenden Bereich
aufwenden.

In einer Reihe von Experimenten demonstriere ich, dass die CCA in der Lage ist,
verschiedene Klassen von Transformationen zu lernen. Dies sind neben Rotation, Trans-
lation, Skalierung und allgemeinen nicht linearen Transformationen, insbesondere auch
allgemeine Permutationen. Dies ist möglich, da die CCA keine Annahmen über die To-
pologie der Daten macht. Die Experimente zeigen auch, dass die CCA bei der Prädiktion
in den nicht überlappenden Bereichen extrapoliert.

In der Praxis kann die CCA über die Singulärwertzerlegung berechnet werden. Dies
bedeutet gleichzeitig, dass die CCA in Abhängigkeit der Rechenresourcen typischerweise
nicht auf Basis voll aufgelöster Bilder berechnet werden kann, sondern nur auf kleinen
Patches. Ich zeige, dass die CCA dennoch verwendet werden kann, um Korrespondenz
Priors für reale Multi-Kamera Szenarien (mit hoher Auflösung) zu bestimmen. Hierfür
wende ich die CCA auf einer grob aufgelösten Version zweier Bildströme an. Für eine
bestimmte Position in der ersten Ansicht bestimme ich dann ein Binärbild in grober
Auflösung, in der nur eben dieser Position der Wert 1 zugeordnet wird. Dieses Bild wird
dann per Prädiktion in die zweite Ansicht transformiert und auf die feine Auflösungsstufe
projiziert. Dabei ergibt sich dann ein Bereich in der zweiten Ansicht, in der sich die wahre
Korrespondenz mit hoher Wahrscheinlichkeit befindet (der Korrespondenz Prior).

Fazit Die in der vorliegenden Arbeit vorgestellten Verfahren zeigen, dass Korrespon-
denzbeziehungen automatisiert und unüberwacht gelernt werden können. Aus meiner
Sicht ist die Verknüpfung der vorgestellten Ansätze mit klassischen berechnenden Ver-
fahren von besonderem Interesse. Dabei kann zunächst Vorwissen über die zu erwarten-
den Korrespondenzbeziehungen gesammelt werden, um dann in jedem Zeitschritt die
wahre Korrespondenz zu bestimmen.
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Abstract

In this dissertation, I investigate unsupervised learning of correspondence relations in
long streams of visual data. Specifically, I regard the so called correspondence problem
which defines the task of identifying pairs of 2-D pixel positions, which are the images
of the same 3-D world point. The correspondence problem is a fundamental problem to
be solved in many low-level computer vision algorithms. Prominent examples include
stereo and motion estimation, where pixel correspondences among two different images
(taken at the same point in time with two cameras (stereo) or with the same camera at
two different points in time (motion)) are sought.

In the first part of the dissertation, I will introduce the method of Temporal Coin-
cidence Analysis (TCA) which is an algorithm to learn the geometric and photometric
relationships in binocular camera setups in an unsupervised manner. The fundamental
difference to classic spatial matching techniques is that the search for similar spatial
patterns is replaced by an analysis of temporal coincidences of single pixels. In TCA,
a correspondence is represented by means of a correspondence distribution. This corre-
spondence distribution is estimated based on the repeated detection and matching of
strong temporal grey value changes (=events) among the regarded views. Correspon-
dences are never computed explicitly, only the evidence for a correspondence relation
by means of matched events is collected over time.

I will show that TCA is theoretically justified by means of a statistical model for
matching pairs of independent signal channels. In this model, the basic principle of
detecting and matching temporal events in the grey value signal is cast as a temporal
update scheme of an associated posterior distribution. The posterior distribution may
also be approximated by replacing the posterior update with a simple threshold test. The
correspondence distribution then turns into an accumulator array. It is very important
to note that the correspondence distribution encodes the average correspondence relation
and not the correspondence at a specific point in time. This is a conceptual difference
to classical spatial feature matching, both with respect to the processing structure but
more importantly to the results obtained: a spatial approach considers a single pair
of images and outputs a pixel-to-pixel correspondence. Compared to this, I process
sequences of images and learn the average correspondence relation. Only under specific
conditions, which will be explained in the thesis, the results of both approaches are
identical.

I define a set of correspondence distribution attributes which allow to monitor the
progress of the learning scheme over time and allow to assess the uncertainty of the cor-
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respondence estimate. These are important entities and allow to propagate uncertainties
to higher level processes which operate on the learnt correspondences.

As TCA regards grey value differences among different cameras, we have to take
photometric differences among the regarded views into account. Therefore, besides
learning the geometrical relationships, I propose a method to learn the photometric
relationships among the views. To this end, I define the Grey Value Transfer Function
which maps grey values observed in the first camera to its corresponding grey value in
the second camera. I will present an algorithm to estimate the GVTF based on pairs of
grey values observed at corresponding pairs of pixels learnt via TCA.

I will illustrate the applicability of TCA in a series of simulations as well as in a series
of experiments based on real world camera setups. TCA can handle setups in which
the camera views are translated and/or rotated w.r.t. each other or show a large scale
difference. The cameras may be static or moving. The only assumption that is made
is that the relative orientation of the cameras is fixed and that the video streams are
synchronised.

Besides learning correspondence distributions in a stereo setup, I will show that TCA
can also be used to learn the average optical flow in a monocular video stream without
explicitly estimating optical flow vectors. As will be seen, TCA is applied as for the
stereo case without changing the learning process in any way. Experimental results val-
idate that TCA can learn motion correspondences for various camera setups, including
static and moving cameras.

I will also show that TCA can be used to infer global hidden motion variables, e.g., the
yaw rate of a moving camera. To this end, I pool the set of matched events over many
pixels lying approximately at infinity. The matched events will then form a cluster,
encoding the true yaw rate.

I will also present several straight forward extensions to TCA, such as applying TCA
in a coarse to fine approach, based on a scale space representation. Furthermore, I show
how a sparse set of learnt optical flow vectors may be used to estimate the parameters
of a bi-quadratic model which allows to interpolate the optical flow at arbitrary pixel
locations. Based on a mixture of TCA experts, I show how the method can be used to
learn multiple different dominant types of motion.

In the second part of the thesis, I present an approach to learn global image trans-
formations in an unsupervised manner. My approach is based on a method known as
Canonical Correlation Analysis (CCA). Given a large set of image pairs, which are re-
lated by a single fixed transformation, I show that CCA extracts pairs of basis vectors
which encode the sought transformation implicitly. Note that this work is not about
estimating the parameters of a specific type of transformation, but to learn the transfor-
mation itself. In contrast to a classic approach, I never compute spatial features and a
transformation is not encoded by means of a parametric model but by a mapping tensor
which may represent arbitrary nonlinear transformations. The learnt transformation can

xii



be applied to previously unseen data based on a MMSE estimator. While this is a linear
operation, the learnt basis vectors may encode arbitrary nonlinear transformations.

As will be discussed in the thesis, a limitation of classic CCA is that only one trans-
formation at a time may be learnt and that it is not possible to directly infer the shared
signal, i.e., the parts of the signal which are visible within both views irrespective of the
transformation. In order to extract the spatial footprint of the shared signal, I propose
to regard the summed energy filters.

In a somewhat more practical application, I show that CCA can be used to generate
correspondence priors in real-world binocular camera setups. To this end, I learn a
global transformation between the input views on a coarse scale. Then, for a given pixel
location in a first view, a region within a second view may be determined in which the
true correspondence is located with high probability.

To conclude, in this dissertation I will present two learning based approaches ad-
dressing the important correspondence problem in computer vision. Both approaches
are unsupervised and show that local and global correspondence relations can be learnt
instead of being computed.
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1 Introduction

In this thesis, I investigate learning of correspondence relations in long streams of visual
data. In the first part of the thesis, I regard learning of local correspondence relations,
i.e., pixel correspondences, which are at the core of stereo vision and motion estimation.
My primary goal is not to determine pixel-to-pixel correspondences at a specific time
instant, but to learn the distribution of the correspondence relation by only regarding
the temporal course of single pixels. In contrast to classic approaches, I show that stereo
and motion perception may be learnt without explicitly computing stereo disparity or
motion vectors.

In the second part of the thesis, I regard learning of global correspondence relations,
i.e., global mappings or transformations between pairs of image streams. In contrast to
classic approaches, I do not fit the parameters of a parametric model based on spatial
image features. Instead, I determine sets of new basis vectors, which implicitly encode
the underlying transformation. This is done without the need of computing spatial
features, but requires pairs of long image streams in which the global transformation is
held fixed.

1.1 Motivation and Thesis Statement

Since the advent of computer vision roughly 50 years ago (Papert 1966), we may ask
whether the vision problem is solved? In order to answer this question, we first need
to define the vision problem. According to Marr (Marr 1982, p. 31), the vision problem
can be described as the process, which generates a description of the world based on
images of it. This description has to be useful to the viewer (=a specific application) and
should not contain irrelevant information. This is a very general description of the vision
problem and depending on the description sought, we may answer the introductory
question by yes, partially and no.

Up to now, computer vision technology is successfully applied in various fields, in
which the underlying vision problem is at least satisfactorily solved. These range from
consumer electronics such as handheld cameras, which are able to detect faces, to ad-
vanced driver assistance systems, which (among others) automatically keep a car on
track 1, through to high tech systems like NASA’s Mars Exploration Rover (MER),
which made use of stereo vision for navigation (Matthies et al. 2007). In all of these

1cf. pioneering work by (Dickmanns et al. 1994), see (McCall and Trivedi 2006) for a review article
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1 Introduction

applications, rather specialised vision problems are addressed, which are solved based
on a carefully designed and engineered system.

In contrast to isolated vision problems, we are interested in more general vision sys-
tems, which are able to learn and adapt to their environment with almost no supervision
and are able to solve various tasks. As such, the replication of the human visual system
can be considered the holy grail of computer vision. However, up to now it is largely
unknown how the human visual system really works. Nevertheless, it is an accepted
view that the ability to see and understand and interpret the environment is not a
vision problem only. Instead, the output of many subsystems (vision, memory etc.) are
integrated to form a hypothesis of what is actually seen. These generated hypotheses
not necessarily represent the true physical world. For example, various optical illusions
show to some extent that the brain sees what it wants to see, based on past experience.

As we have seen in the definition of the vision problem, an autonomous system needs
to be able to extract the relevant information about the environment in which it operates
in order to solve a specific task. Among others, very important sources of information or
cues are given by depth and motion perception. For example, depth perception allows
to infer distances to objects, their size etc. Motion perception allows to infer ego-motion,
to track objects etc.

At the core of both depth and motion perception is the so called correspondence
problem in which we have to identify the projection of the same 3-D world point in two
different images (taken at the same point in time with two cameras (stereo) or with
the same camera at two different points in time (motion)). Many different approaches
to solve the correspondence problem have been proposed. Most of them are based on
computing correspondences based on an engineered recipe, but they do not explain how
correspondences can be learnt. In contrast to this, in this thesis I address the problem
of learning correspondence relations from long image sequences in an autonomous and
unsupervised manner. My motivation lies in the question, how processing architectures
can evolve almost automatically that successfully unveil the inherent stereo or motion
structure in streams of visual data.

Learning of correspondence relations is not of theoretical interest only; in order to
build more general or intelligent vision systems, it is important that systems are able
to adapt to the environment in which they operate. This includes self-calibration, i.e.,
learning of (probably time varying) model parameters and learning of what is typical
and abnormal. Furthermore, the systems need to be able to assess their confidence
or uncertainty about the learnt entities and need to know when they cannot provide
reliable output (Förstner 1991). In turn, the learnt knowledge may serve as a prior to
constrain a specific problem; e.g., if the typical disparity or optical flow range is known,
we may restrict or guide a stereo or motion estimation scheme.

Learning and self-adapting vision systems become more and more important for indus-
trial vision applications. As an example, large scale multi-camera surveillance networks
are especially tedious to calibrate and to monitor by human personnel. Here, the goal

2



1.2 Contributions and Outline

is that a vision system learns which cameras show an overlap or learn typical and suspi-
cious object movement and to generate alerts, which should be inspected by staff. For
example, the company Snap2 markets video surveillance software, which is able to au-
tomatically detect pairs of cameras which are very likely to show an overlap. Learning
is done based on the method proposed in (van den Hengel et al. 2007a) (also see Sec.
2.3).

The approaches developed in this thesis can directly be used as a module in existing
systems. They may serve as low level processes, which can generate priors for local and
global correspondence relations. Especially the approach to learn local correspondence
relations can adapt to given computational/energy constraints and explicitly models
uncertainties in its estimates.

1.2 Contributions and Outline

In Chapter 2, I will introduce mathematical notation and background material, which
is relevant for an understanding of the material presented in the main part of the thesis.

The main body of the thesis is organised in two major parts, in which I investigate
learning of local and global correspondence relations in long streams of visual data,
respectively. Throughout the thesis, I will review and introduce relevant related work
on a per chapter basis.

In Chapter 3, I propose the method of Temporal Coincidence Analysis (TCA), which
allows to learn local correspondence relations (=on the pixel level) between the views
of binocular camera setups. The only assumption that is made is that the relative ori-
entation of the cameras is fixed and that the cameras are temporally synchronised. I
will begin with a rather informal introduction and motivation of TCA before I turn to
a theoretical derivation. We will see that the essential difference to standard spatial
matching techniques is that the search for similar spatial patterns is replaced by an
analysis of temporal coincidences of single pixels. In this scheme, we collect evidence
for a correspondence by the detection and matching of temporal events in long image
sequences. This approach yields correspondence distributions, which will encode the
average correspondence observed. Depending on the scene structure, the average corre-
spondence may encode the true pixel-to-pixel correspondence at every time step or will
otherwise be a prior on where the correspondence is to be expected. I propose a set of
attributes of the correspondence distribution, such as its first and second order statis-
tics and its entropy, in order to monitor the learning process and assess uncertainties in
the correspondence estimate. Furthermore, I show that TCA may naturally be applied
within a multi-scale framework and allows coarse to fine correspondence learning.

In TCA, temporal events are extracted from the temporal course of a pixel’s grey
value signal. Thus, the matching of events will depend on the photometric differences

2http://www.snapsurveillance.com/
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among the regarded views. I therefore introduce the concept of the Grey Value Transfer
Function (GVTF) which maps grey values between pairs of cameras and show that the
GVTF can be learnt from a set of learnt correspondences. Both TCA and the GVTF
model will be supported and validated by means of simulation results.

In Chapter 4, I apply TCA to real-world binocular (stereo) camera setups. We will see
that TCA is able to capture and represent the correspondence relations found for rotated
and twisted orientations of the cameras, arbitrary imaging geometry and under large
tolerance for photometric differences in the image sensors. Furthermore, the cameras
may be static or moving.

In Chapter 5, I apply TCA to monocular camera setups and learn correspondence
relations which are induced by the optical flow. We will see that TCA is able to learn the
average flow field, which a moving platform observes during forward motion. Typically,
these will be sparse flow fields and I present a bi-quadratic model which allows to
interpolate these. I extend the basic model and propose a latent variable model, which
consists of a mixture of TCA experts. Besides forward motion, this model can also learn
the average motion maps observed during left and right motion. During training, I infer
the platform motion by a method known as phase correlation (Kuglin and Hines 1975a).
Furthermore, by pooling the matched events over a subset of pixels lying at infinity, I
show that TCA can also be used to infer instantaneous motion. As for the stereo case,
the method is not restricted to a specific camera model.

In the second part of the thesis, starting in Chapter 6, I present an approach to learn
global image transformations in an unsupervised manner. The proposed method builds
on a model known as Canonical Correlation Analysis (CCA) (Hotelling 1936). Given a
large set of image pairs, which are related by a single transformation, a transformation is
learnt and represented by means of two sets of basis vectors, obtained via CCA. This is in
contrast to a functional and parametric approach to model/infer global transformations,
in which only the parameters of a transformation are determined. My goal is to learn
the transformation itself.

While the transformation obtained via CCA is only given implicitly, I show that it can
be applied to previously unseen data by means of an MMSE estimator. While this is a
linear operation, the basis vectors may represent nonlinear transformations of the input
data as well. I show how the rank of the signal that is shared among the views may be
determined from canonical correlations and how the overlapping (=shared) dimensions
among the views may be inferred. Experimental results validate the presented approach
and show that various kinds of transformations can be learnt unsupervised. While I
assume that the training data is related by a single and fixed transformation, I present
a straightforward mixture model of CCA experts, which allows to split multiple fixed
transformations.

In Chapter 7, I give a brief summary of the thesis and conclude with an outlook for
extensions and future work.
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1.3 Scientific Dissemination

In Appendix A, I present an overview of the real-world image streams used throughout
the thesis for evaluation and illustration purposes.

1.3 Scientific Dissemination

The material presented in this thesis has been published or is in the process of sub-
mission. The learning schemes for local and global correspondence relations have been
published in (Conrad, Guevara, et al. 2011) and (Conrad and Mester 2012, 2016). The
TCA approach also is the basis for (Conrad and Mester 2013) and (Eisenbach, Conrad,
et al. 2013). The learning of the GVTF has been published in (Conrad and Mester
2015). Some of the technical ideas presented in the GVTF estimation and the inter-
polation of sparse motion fields are inspired by our work presented in (Conrad, Mertz,
et al. 2013), (Guevara et al. 2012) and (Guevara et al. 2011).
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2 Background

In the following, I will introduce background material, relevant for an understanding
of the material presented in subsequent chapters. I will shortly review the common
approach to describe the geometric relationship between pairs of views by means of
epipolar geometry. This leads to the so called fundamental matrix, which can be es-
timated from spatial keypoints. I will review the classic approach to establish spatial
keypoints by means of the spatial feature matching pipeline. Further related work will
then be reviewed on a per chapter basis. For an in depth introduction to the material
presented in the following, I refer to standard textbooks such as (Forsyth and Ponce
2002; Hartley and Zisserman 2004; Szeliski 2010).

Within the main part of the thesis, I will then show that geometric and photometric
relationships within general binocular camera setups can be learnt unsupervised and
without making use of epipolar geometry and spatial keypoints in the classic sense.

First of all, I will next introduce the notation used throughout this thesis.

2.1 Notation

Before introducing the thesis specific notation, let us define the basic mathematical en-
tities used throughout the thesis:

Scalars a, b, c, ...
Vectors a, b, c, ...
i-th vector element a(i)
Matrices A,B,C, ...
i-th matrix row Ai,:

i-th matrix column A:,i

Vector/Matrix transpose aT , BT

Vector of zeros 0
Vector of n zeros 0n
Constants A,B,C
Scalar valued function f(a), f(b), f(C)
Vector valued function f(a), f(b), f(C)
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Figure 2.1: Spatiotemporal domain: (left) Spatial domain I, (right) spatiotemporal domain D.

Based on these definitions, we proceed as follows. Let Ci be the i-th camera, also referred
to as view. With the i-th camera, a spatiotemporal image function si is associated as
follows. Let Mi, Ni, T ∈ N, then the spatial domain Ii of the image function is defined
as (cf. Fig. 2.1 (left)):

Ii := [0,Mi]× [0, Ni]. (2.1)

The temporal domain T of the image function is defined as (cf. Fig. 2.1 (right)):

T := [0, T ]. (2.2)

Then the spatiotemporal domain Di of the image function is given by:

Di = Ii × T . (2.3)

Let G be the set of observable grey values, the image function si is then defined as:

si : Di → G. (2.4)

If we regard several cameras, the spatial resolution of their image functions may be
different, but the temporal resolution is assumed to be the same for all cameras.

A pixel is now defined as a point in the spatial image domain with an associated grey
value. Specifically, let xi ∈ Ii be the spatial coordinates of a pixel in camera Ci:

xi =

(
x1
x2

)
i

, (2.5)
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where its grey value at time t ∈ T is given by the image function si(xi, t). I may refer
to xi also simply as pixel in the following. When it is clear from the context, I may also
drop the index of the spatial coordinates xi and simply write x. Sometimes I refer to
xi in its homogeneous coordinates, in which a third coordinate x3 = 1 is attached to xi.

For some camera Ci, its image at time t ∈ T is given by the respective image function
si(·, t). I will use the notation It,i to denote the 2d array (=image) of signal values
of camera Ci at time t, with It,i(xi) = si(xi, t). An image stream is then given by a
temporally ordered set of images.

Two specific camera setups are considered throughout the thesis, these are i) the
binocular (camera) setup and ii) the monocular (camera) setup. The binocular setup
consists of two cameras Ci and Cj and their associated image functions si and sj defined
on the spatiotemporal domains Di and Dj , respectively. The monocular setup is defined
similarly, but for a single camera.

Based on the previous definitions, I may now introduce the concept of a spatial
correspondence. Regard a binocular camera setup as visualised in Fig. 2.2 (left). A
spatial location xi ∈ Ii in camera Ci and a spatial location yj ∈ Ij in camera Cj form a
spatial correspondence, given that they are the images of the same 3-D point (cf. Fig.
2.2 (left)). I will use the shorthand notation xi ↔ yj to denote this relation.

For a fixed spatial location xi, there exists a point-to-point correspondence to a spatial
location yj , if xi ↔ yj holds for all t ∈ T . For a fixed spatial location xi, there exists a
point-to-many correspondence, if there exist at least two different points in time where
xi ↔ yj holds for t1 ∈ T and xi ↔ zj holds for t2 ∈ T , t1 6= t2.

For the monocular setup, I define a temporal correspondence as the pair of pixel
locations xi and yi in camera Ci, which are the images of the same 3-D point at two
consecutive points in time t, t + 1 ∈ T . As for the binocular setup, point-to-point and
point-to-many correspondences are defined.

I will use the notation {X}N to denote the set of N instances of X . For example,
{xi}N denotes the set of N pixel coordinates in Ci. I use the notation xi;n to denote the
n-th pixel coordinates out of the given set.

2.2 Geometric and Photometric Relationships in
Multi-Camera Scenarios

We regard the geometric and photometric relationship of a pair of cameras Ci and Cj .
The following discussion concentrates on the two camera case, however, the presented
theory also holds for two images of the same camera, taken at two different time steps.

The geometric relationship describes corresponding pixel locations xi ↔ yj among
cameras Ci and Cj . We may represent the geometric relationship in a functional form
by means of a mapping function f , which maps a pixel location xi to its corresponding
pixel location yj according to yj = f(xi). Likewise, we may describe the geometric
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2 Background

Figure 2.2: Epipolar geometry: (left) A 3-D (world) point X is projected onto the image plane of
camera Ci and Cj . The projected 2-D points form a spatial correspondence and lie in the epipolar
plane π, which is defined by the triangle given by the camera centres and the 3-D world point. (right)
The true correspondence for a pixel location xi in Cj , lies along the epipolar line lj . If xi is the
projection of a different 3-D point the true correspondence in Cj will move along the epipolar line.
Illustrations adapted from (Hartley and Zisserman 2004).

relationship by enumerating all pixel correspondences among cameras Ci and Cj . As will
be described in the following, depending on the scene structure, the mapping function
or the set of corresponding pixels may vary over time. For the moment being, we regard
the case in which the mapping may change over time. In the second part of the thesis
(cf. Sec. 6) we regard the case of global / static mapping functions.

Based on the theory of epipolar geometry, the geometric relationship of a pair of
cameras may be described in algebraic form by means of the fundamental matrix F , or
the essential matrix E if the calibration of the cameras is known (Hartley and Zisserman
2004).

The fundamental matrix is a 3 × 3 matrix of rank 2 and for a pair of corresponding
pixels xi ↔ yj (here assumed to be given in homogeneous coordinates) it holds:

yTj Fxi = 0. (2.6)

For each pixel location xi in Ci, the fundamental matrix defines a corresponding epipolar
line lj in Cj along which the true correspondence yj must lie according to:

lj = Fxi. (2.7)

Similarly, for yj we have:

li = F Tyj . (2.8)
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Every epipolar line in Ci passes through the epipole ei and likewise every epipolar line
in Cj passes through the epipole ej . The epipole in Ci is the projection of the camera
centre of Cj in Ci (and does not need to lie within the visible part of the image plane,
cf. Fig. 2.2).

We see that if F is known, the search space for a correspondence in either view is
reduced to a 1-D space, i.e., a line in 2-D space. It is important to note that the
relations defined by the fundamental matrix are independent of the scene structure, i.e.,
scene depth. If the scene depth at pixel location xi changes, its correspondence in Cj
will simply move along the epipolar line. However, we also note that the fundamental
matrix does not fully define the geometric relationship, it merely serves to restrict the
search space for pixel correspondences among the views.

As can be seen from Eq. 2.6, the fundamental matrix can be estimated from a set of
K known correspondences {xi ↔ yj}K . Expanding and rearranging Eq. 2.6 we obtain:

[(y1)j · (x1)i (y1)j · (x2)i (y1)j (y2)j · (x1)i ... (2.9)

... (y2)j · (x2)i (y2)j (x1)i (x2)i 1] f = 0,

⇔ aTijf = 0, (2.10)

with f = (f11, f12, f13, f21, f22, f23, f31, f32, f33)
T being the elements of F . By stacking

aTij for the K (at least 8) correspondences in a matrix A we arrive at:
(aij;1)

T

(aij;2)
T

...
(aij;K)T

f = Af = 0. (2.11)

Equation 2.11 defines a homogeneous equation system which can be solved in a least
squares sense via singular value decomposition (SVD) (Golub and Loan 2012). Once the
fundamental matrix is determined, the rank constraint (rank 2) needs to be enforced,
e.g., via the SVD (Hartley and Zisserman 2004, p. 279). It should be noted that the
entries of matrix A should be normalised before solving for f , as the entries in A largely
differ in magnitude (cf. (ibid.) and further analysis in (Mühlich and Mester 2004)).

The fundamental matrix may also be deduced from only 7 correspondences, using the
constraint det(F ) = 0 (due to its rank deficiency). However, typically the fundamental
matrix is robustly estimated from many more than 7 correspondences using a RANSAC
style approach (Fischler and Bolles 1981; Hartley and Zisserman 2004).

As can be seen from the previous derivations, once a set of correspondences is available
the estimation of F is straightforward. The challenge merely lies in the estimation of
a suitable number of pixel correspondences, which will be discussed in the following
section.
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Besides the geometric relationship of a pair of cameras, their photometric relationship
is of interest as well. Regard a pixel correspondence xi ↔ yj at some point in time
t. The respective grey values si(xi, t) and sj(yj , t) will only rarely be identical, due to
signal noise, but more importantly due to different photometric characteristics of the
views. The photometric relationship defines the mappings of grey values:

si(xi, t)→ sj(yj , t), (2.12)

si(xi, t)← sj(yj , t), (2.13)

and explain the illumination differences among the views.
Whenever information from multiple images is to be extracted or compared/matched,

in general, illumination differences among the views need to be taken into account. We
will return to the learning of photometric relationships including a review of relevant
related work in Sec. 3.6.

Let us next regard the correspondence problem.

2.3 The Correspondence Problem in Low-Level Vision

In (Marr and Poggio 1979), Marr defines the correspondence problem for a pair of images
as i) selecting a particular location in one of the images and ii) identify this location in
the second view. While this is a simple, yet complete task description, it turns out that
the correspondence problem is a challenging task in practice.

The basic principle of identifying correspondences appears in many forms in computer
vision, both in low-level and high-level vision: In this thesis, I regard the correspondence
problem in low-level vision, i.e., on the pixel level. However, on a more abstract level, the
high-level task of, say, object recognition may also be interpreted as a correspondence
problem.

The perhaps most widely studied instances of the correspondence problem in low-level
vision appear in stereo vision and motion estimation. In stereo vision, we regard two
images taken at the same point in time by two cameras Ci and Cj . In the motion case,
we regard two images taken at two different points in time by a single camera Ci.

Estimation of stereo and motion correspondences play an important role in almost
every high-level computer vision task. One reason for this is that motion and depth cues
allow to form strong hypothesis about the sensed environment (e.g., distances to objects,
moving direction of objects etc.) and hence disambiguate the visual input. Furthermore,
based on a set of pixel correspondences we may compute an algebraic representation of
the geometric relationships of a pair of cameras (i.e., the fundamental matrix, cf. Sec.
2.2). Identifying correspondences in multiple views is also a core problem in methods
to 3-D reconstruction, such as structure from motion1 and bundle adjustment2, which

1see (Torr and Zisserman 2000) for a review of methods
2see (Triggs et al. 2000) for a review of methods
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Figure 2.3: Stereo and motion correspondence problem: (top) Image pair Teddy related by
disparity (stereo), (bottom) image pair Rubber Whale related by optical flow (motion). Images
taken from (Baker et al. 2011). Compare with Fig. 2.4. Best viewed in colour.

is, e.g., used to reconstruct 3-D scenes from internet photo collections (Snavely et al.
2008, 2006).

Conceptually, the correspondence problem in stereo vision and motion estimation is
the same; pairs of pixel locations which are the images of the same 3-D point are sought.
The difference between a stereo and a motion correspondence merely lies in the cause
or explanation why a particular correspondence exists. In stereo, a correspondence is
induced by a specific scene depth and is encoded by the disparity vector. In the motion
case, a correspondence is due to apparent object motion (which itself depends on the
depth of the regarded object) and is encoded by the optical flow vector.

One refers to the dense or sparse correspondence problem if the correspondence prob-
lem is to be solved for every pixel (dense) or only a subset of pixels (sparse). Figure 2.3
visualises example image pairs for the stereo and motion problem, as well as a dense
disparity map and a dense optical flow map. As shown in Fig. 2.3, a dense represen-
tation of disparity or optical flow is typically visualised as a grey or colour image. For
the stereo case, if the images are rectified (correspondence known to have the same y
coordinate) a grey value encodes the scalar disparity value. For the motion case, the op-
tical flow vectors are typically colour coded in HSV space. The orientation of the vector
determines the hue value, while its magnitude determines the saturation. A sparse set
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dense optical flow sparse optical flow colour wheel

Figure 2.4: Dense and sparse optical flow: (left) Dense and (middle) sparse visualisation of optical
flow for image pair Rubber Whale (Baker et al. 2011), (right) colour wheel by which the optical
flow vector is colour coded. See text for details. Best viewed in colour.

of disparity or flow vectors is often visualised by means of a 2-D vector field (see Fig.
2.4 for examples).

Let us now turn to the problem of establishing spatial correspondences. As before,
we may differentiate between sparse and dense algorithms. It is merely up to the final
application (and the available computational resources) whether a dense or sparse rep-
resentation is sought. If the goal is to generate accurate 3-D models of some real world
object, a dense approach is to be preferred. If the goal is to track an object trough an
image sequence, one would rather extract prominent object features and only compute
the optical flow for these. It is beyond this thesis to give an in depth review of all the
existing methods for stereo and motion correspondences, but I refer to (Baker et al.
2011; D. Scharstein and Szeliski 2002; Szeliski 2010) for an overview.

The efficiency and robustness of a correspondence algorithm may be increased by
the incorporation of prior knowledge about the scene geometry, object motion etc. This
prior knowledge allows to restrict the search space among which the true correspondence
is to be expected. For example, if the fundamental matrix for a stereo image pair is
known, the search space may be restricted to a line as opposed to the whole 2-D space.
Similarly, a motion estimation scheme may be guided if the expected range of the flow
vectors is known. This is of special interest when the optical flow is large.

In the following, I will review the standard approach to the estimation of (sparse)
spatial correspondences, which is based on the spatial feature matching pipeline.

2.3.1 Correspondence Relations and the Spatial Feature Matching
Pipeline

In the following, we regard a binocular camera setup with cameras Ci and Cj . From both
cameras, we obtain a stream of T images (cf. Sec. 2.1). We assume that the camera’s
fields of view overlap at least partially. Our goal is to establish a set of P correspondences
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{xi ↔ yj}P across the images. We may study the correspondence problem now at some
point in time t for the pair of images Ii,t and Ij,t. As has been described already, it
is important to note that the correspondences established at time t will usually only
exist during short time intervals. If we regard a pixel location xi in camera Ci as
fixed, its corresponding location yj in Cj may vary over time, depending on the scene
structure and camera setup. I will discuss this in greater detail in Sec. 3, however, for
the moment being, let us assume that our task is to establish correspondences among
the pair of images Ii,t and Ij,t.

The conventional spatial approach to establish a sparse set of correspondences is based
on the spatial feature matching pipeline. This pipeline consists of three stages (Szeliski
2010):

i) the detection of H spatial keypoints or local features at positions {xi}H in image
Ii,t and K keypoints at locations {yj}K in image Ij,t. Usually we have H 6= K,
i.e., we detect different numbers of keypoints across the images,

ii) each keypoint is described by means of a descriptor, based on a local neighbour-
hood centred on the keypoint,

iii) a set {xi ↔ yj}P of P correspondences is established by matching the descriptors
across the images.

A keypoint may be regarded as a spatial location in an image with a distinctive local
neighbourhood, which encodes a large amount of information that can be utilised to
match keypoints across images. While keypoints are often considered to be of a corner
type shape, it should be noted that keypoints may also be given by blobs, edges, etc.
(cf. (ibid.)).

One of the early and perhaps most classic (corner) keypoint detectors is the Harris
detector (Harris and Stephens 1988), which itself is an improved version of the detector
proposed in (Moravec 1980). A keypoint is detected, given that the local autocorrelation
surface of a pixel location is peaked (Szeliski 2010). This means, when a small window
around the regarded pixel is shifted in any direction, this will lead to a large dissimilarity
(in terms of the pixel wise SSD) with the original (non-shifted) patch. The detection
itself is then based on the analysis of the local autocorrelation function, or the structure
tensor (which itself is an estimate of the Hessian of the local autocorrelation, see Sec.3.6
for details). Other detectors, which are based on the analysis of the structure tensor
have been proposed, e.g., (Förstner and Gülch 1987; Shi and Tomasi 1994). Other well
known detectors are the FAST (Rosten and Drummond 2006) and FASTER (Rosten,
Porter, et al. 2010) detectors, which are tailored for real time processing. See (Schmid
et al. 2000; Szeliski 2010; Triggs 2004; Tuytelaars and Mikolajczyk 2008) for a general
review of other detectors and further details.
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Figure 2.5: Local spatial features: For two images of the Graf data set (Mikolajczyk 2014), I
computed Harris corners, which are marked by yellow/black dots. Best viewed in colour.

According to (Förstner 1986, 1991), important properties of keypoint detectors are
(among others) distinctness, invariance and stability. Distinctness refers to the def-
inition of a keypoint itself. Invariance means that keypoints, or rather the measure
based on which they are computed should be invariant to expected geometric distor-
tions. Stability refers to a property, which today is often termed repeatability (due to
(Schmid et al. 2000)) and means that a keypoint detected in image Ii,t should also be
detected in image Ij,t (if visible). Clearly, spatial transformations of the input images
are a challenge to keypoint detectors, as they work on a spatial support region around
the regarded pixel. If the image is then viewed under, say, an affine transform, the
descriptor may change or no keypoint may be detectable at all. Similar arguments hold
when the illumination among the images is different. This is often handled via some
form of normalisation of the grey values (cf. Sec. 3.6 for further discussion).

Figure 2.5 shows Harris keypoints, which I have computed for two images of the Graf
dataset (Mikolajczyk 2014). It can be seen that keypoints are detected at corner like
structures, but not in homogeneous areas or line like structures. While the images show
the same content to a large extent, there is a considerable difference in the viewpoint.
By visual inspection, it can be seen that many keypoints found in the first image are also
detected in the second image. However, there is a considerable amount of non-repeated
keypoints.

Once sets of keypoints {xi}H and {yj}K in images Ii,t and Ij,t are detected, they
have to be matched based on some form of descriptors. As for keypoint detectors, many
different descriptors have been proposed. Design criteria for descriptors are invariance
to certain geometric and photometric transforms, or covariance such that the descriptor
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commutes with these transforms (Tuytelaars and Mikolajczyk 2008). The perhaps best
known descriptor (including a detection stage) is the Scale Invariant Feature Transform
(SIFT) (Lowe 2004, 1999). While it is proven to produce stable results, it suffers from
high computational demands. Since then, an ever growing number of descriptors have
been proposed. Speeded Up Robust Features (SURF) (Bay et al. 2006) (including a
detection stage as well) which may be seen as a faster extension of SIFT. The Binary
Robust Independent Elementary Features (BRIEF) descriptor (Calonder et al. 2010) is
tailored to be efficiently computable and matchable. The descriptor builds on intensity
differences which are mapped to a binary representation. Matching is then performed
by computing the Hamming distance between descriptors (Rublee et al. 2011). For
further details on keypoint descriptors and comparative evaluations of these see, e.g.,
(Mikolajczyk and Schmid 2005).

Besides the purely spatial approaches described previously, several spatiotemporal
detectors and descriptors have been proposed. Many of these are extensions of classic
spatial approaches like the Harris detector to the temporal domain (Laptev 2005).

Spatiotemporal detectors and descriptors are mainly used in event and action recogni-
tion (see (H. Wang et al. 2009) for an overview). However, the spatiotemporal features
may not directly be utilised to determine pixel correspondences across images, as the
correspondence relation may change over time and hence within the spatiotemporal
feature. See Sec. 3.1 for a detailed discussion of this issue.

While the correspondence problem may be studied for a pair of static images Ii,t
and Ij,t as described previously, today it becomes increasingly important to establish
correspondences in streams of images {Ii}T and {Ij}T . For example, in multi-camera
networks, driver assistance scenarios (Franke et al. 2005; Müller et al. 2011) or simul-
taneous localisation and mapping applications (Thrun et al. 2005), where long image
sequences are available.

Most approaches to estimate the geometric relations between multiple views of a
dynamic scene are based on processing information that is either purely spatial, or a
compound of spatial and temporal information. Usually correspondences are sought to
estimate the fundamental matrix, trifocal tensor, etc. Often, knowledge about epipolar
geometry is used as a constraint during estimation. Examples of purely spatial methods
are the ones described previously. However, it seems to be rather inefficient not to make
use of the temporal information.

In the field of multi-camera networks, several spatiotemporal approaches have been
proposed. Wang et al. (X. Wang et al. 2010) describe learning of correspondences
by matching trajectories that belong to the same activity, in order to connect non-
overlapping viewpoints over entry and exit zones.

Tracks in multiple cameras are also generated in (L. Lee et al. 2000) and used to
estimate an overall ground plane, which is aligned to the different camera views.
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In (Sinha et al. 2004), the epipolar geometry for a set of cameras is estimated by dynamic
object silhouettes. Here, they make explicit use of constraints derived from epipolar
geometry.

In order to learn the topology of a camera network, Ellis et al. (Ellis et al. 2003)
identify camera entry and exit zones between different views by accumulating events of
disappearing and appearing objects within these zones.

There are also semi-automatic methods, e.g. in (Svoboda et al. 2005), in which fiducial
markers/laser pointers are manually moved through the camera network. These markers
are easily tracked within the images and allow for recovery of the epipolar geometry.

In (van den Hengel et al. 2007b; van den Hengel, Dick, and Hill 2006) a method to
determine camera overlap in large surveillance networks is presented. The approach is
based on the principle that non-overlapping image regions show distinct activity patterns
at a specific time instant.

2.3.2 Learning Correspondence Relations

While we have seen how correspondences can be computed based on local features, in
this thesis I am interested in learning correspondences within long streams of images
without explicitly solving the correspondence problem and without using knowledge
about epipolar geometry at all. As we have seen, learning of the geometric relationship
may be studied locally or globally. In a local approach, individual pixel correspon-
dences are sought, while in a global approach a holistic mapping function is sought.
In the first part of the thesis, I will address unsupervised learning of individual pixel
correspondences while the second part of the thesis is concerned with learning global
mappings/transformations. Results presented in this thesis show that correspondence
relations can evolve autonomously, both for the stereo and motion case.

2.4 Summary

To summarise, this chapter introduced the principles of correspondence estimation in
low-level vision. The common approach to establish pixel correspondences is based on
the detection and matching of local spatial keypoints. These correspondences are then
the precursor to estimate the fundamental matrix. The fundamental matrix is an alge-
braic representation of the geometric relationship of a pair of views. The fundamental
matrix is independent of the scene structure observed by the cameras and reduces the
search space for correspondences to a 1-D space.
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Part I

Learning Pixel Correspondences
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3 Temporal Coincidence Analysis

In Sec. 2, we have seen that the predominant approach to establish spatial corre-
spondences is based on the detection of i) spatial keypoints and ii) matching of these
keypoints based on spatial descriptors. In fact, there is a large ’toolbox’ of keypoint
detectors and descriptors, which allows to actually engineer a system that computes
spatial correspondences. In contrast, I am interested in discovering principles that let a
system learn correspondences autonomously. In the following, I will motivate and de-
velop such a principle, which only regards the temporal information of single pixels and
never explicitly computes disparity or flow vectors and does not assume any knowledge
about epipolar geometry. For reasons that become clear shortly, I denote this approach
Temporal Coincidence Analysis (TCA).

3.1 Introduction

In the following, I will develop and analyse the method of Temporal Coincidence Analysis
(TCA), which is an algorithm to learn the geometric and photometric relationships
among pairs of views. The key motivation of the proposed method is the question: What
can we learn about the relationships between pairs of views by only looking at single
pixels over extended periods of time and simultaneously making almost no assumptions
about camera models or scene geometry? While the mathematical structure of the
geometric relationship between two cameras is well known and explained by epipolar
geometry (cf. Sec. 2.2 and (Hartley and Zisserman 2004)), this does not explain how
correspondences may evolve over time and can be learnt in an autonomous way.

In contrast to the spatial feature matching pipeline (cf. Sec. 2.3), I only regard the
temporal pixel grey value process and show that comparing single pixels, but doing so
for a long time, allows to solve the task of finding geometric correspondences between
images. The principle of the method is to collect evidence over extended periods of
time: Two pixels in two different views of the same scene may correspond to the same
location in the observed (3-D) space, if their grey value signals show a similar behaviour
over time. Compared to a spatial approach, TCA shares a similar processing structure,
but instead of spatial pixel neighbourhoods we identify, describe and match single pixel
temporal neighbourhoods. Next, I will give an intuitive and rather informal overview of
the approach before I present a formal treatment in Sec. 3.3.

First, let me motivate that the temporal signal of single pixels carries enough infor-
mation to establish spatial correspondences. To this end, we detect temporal keypoints,
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Figure 3.1: Temporal signal of single pixels: (left) For each selected pixel, its temporal grey value
signal over 1000 frames of view C1 of sequence GUBo1616 (right) is plotted. The temporal signal of
each pixel may be considered a fingerprint. TCA solely builds on these temporal signals to establish
correspondences. See text for details.

summarise them by a suitable descriptor and finally match them. Regard Fig. 3.1. For
three arbitrarily selected pixels in view C1 of sequence GUBo1616 (c.f. App. A), their
temporal grey value signal is plotted over 1000 frames. It can be seen that the temporal
signals are most of the time unique and characteristic for each of the selected pixels.
Furthermore, it seems that the temporal signals switch between two states: i) a resting
state, where the signal is merely constant but afflicted with noise, and ii) an active
state, where the signal changes suddenly and abruptly. Figure 3.2 shows for each of the
previously selected pixels the frame at time t, for which the signal change between time
t− 1 and t was maximum within the 1000 regarded frames. It can be seen that in this
scene, strong signal changes are due to object motion, caused by cars and pedestrians
at the regarded pixel. Besides object motion, signal changes may be caused due to self
(camera) motion, illumination changes etc. The detection and matching of these signal
changes are at the core of TCA. We also need to define a descriptor, which summarises
the signal change over a specific length of the signal. In the previous example, signal
changes were described by the grey value difference within consecutive time steps. Other
choices are of course possible, e.g., the absolute difference or a simple binary descriptor.
However, the descriptors I consider are only determined within consecutive time steps.
While this could be considered an arbitrary choice, the theoretical justification for this
is that a pixel-to-pixel correspondence may change over time when the scene depth at
the regarded pixel changes (cf. Sec. 3.4 for further details).

In the following, I am especially interested in strong signal changes above the signal
noise level and denote these as events or keypoints in the temporal signal. Events
may be considered the temporal counterpart to spatial keypoints; both are assumed
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Figure 3.2: Large temporal signal changes: For each selected pixel, the frame at time t, for which
the signal change between time t − 1 and t was maximum is visualised. For this sequence, signal
changes above the noise level are predominantly due to object motion. See text for details.

to be unique or distinctive within the temporal and spatial domain, respectively, and
thus carry information, which allows them to be matched. As will be shown later, the
uniqueness or distinctiveness of an event is inversely proportional to the probability of
observing the event.

Let us now turn to the problem of identifying corresponding pixels among two views.
Intuitively, a pair of corresponding pixels should obey a similar temporal grey value
signal (assuming mainly lambertian surfaces). Figure 3.3 visualises the temporal grey
value signal for six hand selected correspondences in sequence GUBo1616. Again, the
individual temporal signals switch between a resting and an active state. As all selected
pixels lie on the road surface, their grey values within the resting state are very similar,
and we may not expect to identify a correspondence based on single grey values. Note
that in practice, even corresponding signals may differ significantly by means of their
grey values due to noise, illumination differences, differing camera transfer functions
etc.. A single pixel in one view may also be distributed over a set of pixels in a second
view, due to perspective differences of the views. All these effects can also be seen from
the signals shown in Fig. 3.3. Hence, similar grey values are only a very weak cue for
a correspondence. However, really decisive are strong coincident signal changes, i.e.,
events in the grey value signal. Figure 3.4 visualises the same signals as Fig. 3.3, but
now with constant signal parts masked out. Regard the first (blue marked) signal and
its first non-masked signal chunk, where events occur. By only considering events in
the signal, the number of possibly corresponding signals gets reduced (green and orange
marked signals), but we are still not able to uniquely identify the true correspondence.
Obviously, non-corresponding signals may obey an event at the same point in time (red
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3 Temporal Coincidence Analysis

and purple marked signals). However, what is possible is to identify a correspondence
based on the repeated coincidence of events. The idea is then to accumulate for each
signal and each possible correspondence the number of similar events over time. Then,
the true corresponding signal should have the highest count of coincident events and we
may learn the true correspondence if a sufficient number of frames has been processed.

It is very important to note that by accumulating coincident events, we learn a distri-
bution over the spatial domain, which encodes the average correspondence relation. This
is a conceptual difference to classical spatial feature matching, both with respect to the
processing structure but more importantly to the results obtained: a spatial approach
considers a single pair of images and outputs a pixel-to-pixel correspondence. Compared
to this, I process sequences of images and output a correspondence distribution. Only
under specific conditions, which will be explained in the following, the results of both
approaches are identical.
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Figure 3.3: Temporal signal of pixels in two views: For each selected pixel within the views of
GUBo1616, its temporal grey value signal within 1,000 frames is plotted. Each grey value signal
contains large and abrupt changes. See text for details. Figure only interpretable when viewed in
colour.
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Figure 3.4: Events in the temporal signal of single pixels: For each selected pixel, its temporal
grey value signal within 1,000 frames is plotted. Constant signal parts carry only little information
for a correspondence and are masked out. Decisive are strong signal changes, i.e., events in the grey
value signal. See text for details. Figure only interpretable when viewed in colour.
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3.1 Introduction

I stress again that TCA is not meant as a competitor to classic stereo or flow algorithms
tailored to return instantaneous (per frame) correspondences, but may be seen as a
prior generator. There are good reasons to make use of well-engineered algorithms to
estimate highly accurate disparity or optical flow, but my objective is to demonstrate
that correspondence relations may be learnt and updated over time without any super-
vision and minimal assumptions about the given data; all that is needed are intensity
changes above the sensor noise level. Observe that the average correspondence relations
still contain valuable information, e.g., in order to guide a higher level process, restrict
search areas, or generate confidence information.

Next, let me introduce the concept of a correspondence distribution.

3.1.1 Correspondence Distribution

Regard a binocular camera setup with cameras Ci and Cj . For a pixel xi in the image
plane of the first camera, its associated correspondence distribution is a discrete bivariate
probability distribution over the (discrete) spatial domain of view Cj . The distribution
assigns non zero probability to those locations, where the true correspondence may lie.

Let Yj = (Y1, Y2)
T
j be a random vector, defined on the two dimensional coordinates

of the spatial domain Ij of camera Cj . Random vector Yj is distributed according to
a probability mass function fY and the probability of observing the event Y = yj is
given as:

fY [yj ] = Pr[Y = yj ]. (3.1)

The distribution depends on the camera model, the scene geometry and the actual
correspondence relation (stereo or motion). In the examples and explanations given in
the following, I will usually refer to stereo correspondence distributions. However, they
are equally defined for the motion case.

I will make no assumption about the shape of the distribution, specifically, I do not
restrict the distribution to be of a certain parametric form. However, in practice, the
correspondence distributions will not be arbitrary, but fall into a small number of classes
as discussed in the following.

Assume that the scene depth at pixel xi is arbitrary but fixed over time, and that
there is a corresponding pixel zj ∈ Ij in the spatial domain of camera Cj , such that
xi ↔ zj holds. Then, the correspondence distribution of pixel xi in camera Cj is given
by a unit impulse δ at the true corresponding location in Ij :

fY [yj ] = Pr[Y = yj ] = δ(yj − zj). (3.2)

Note that a correspondence distribution of the form given in Eq. 3.2 only exists when
the scene depth at pixel xi is constant over time. This is for example the case for the
correspondences in sequence GUBo1616, shown in Fig. 3.3. As the cameras observe a
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3 Temporal Coincidence Analysis

traffic junction from a distance much larger than the expected depth changes due to
moving cars and pedestrians, the scene depth at any pixel will at least approximately
be constant. Therefore, every correspondence that exists between the views will be
valid for any time instant and as long as the relative orientation of the cameras does
not change. Compare this to correspondences in sequence GUCar. As the cameras are
moved through a traffic scene, we expect the scene depth to vary. Regard Fig. 3.5,
which shows for a selected pixel x1 in C1, its true corresponding pixel in C2, at two
different points in time. Observe how the corresponding pixel in C2 has moved between
the regarded time steps. Clearly, this is due to the fact that the scene depth at pixel
x1 has changed. While at time t the pixel lies on the road surface, at time t + 1 the
pixel lies on the car, which in fact is closer to the camera than the road surface. Hence,
the location of the true correspondence has to change as well. However, the location of
the true correspondence will not be arbitrary, but according to the theorems of epipolar
geometry (cf. Sec. 2.2), will be restricted to lie on the epipolar line.

If we assume that the scene depth at a pixel xi is sampled equally often, the corre-
spondence distribution will be given by a uniform distribution along a line in the spatial
coordinate space, that is, a uniform distribution along a 1D structure. Depending on
the actual camera model, this might well be a curve, e.g., for fisheye optics. In natural
scenes, the scene depth at a specific pixel will not be sampled uniformly, but will be
limited to a small range of possible depth values. Therefore, we only observe parts
of the true correspondence distribution, which have to be understood as the average
correspondence relation.

As noted previously, if nothing is known about the camera setup, the actual shape
of the correspondence distribution may be arbitrary. However, for many real world
camera setups, the type of correspondence distributions being observed will fall into a
small number of classes. The classes of correspondence distributions which I consider
in the following are:

• i) point-to-point correspondences, if only small depth variations occur,

• ii) point-to-line correspondences, if large depth variations occur,

• iii) no correspondence, if no correspondence exists.

Note that these classes are not meant to be exclusive to a certain camera setup, but only
depend on the observed scene depth. For example, in sequences similar to GUCar, the
pixels at the horizon are expected to obey a point-to-point correspondence, as the scene
depth will stay almost the same. Pixels in the centre part of the image are expected to
obey a point-to-line correspondence distribution, as the scene depth changes often (cf.
Fig. 3.5).

While a classic spatial feature approach addresses the problem of estimating point-
to-point correspondences for single pairs of images, my goal is to estimate the corre-
spondence distribution. It is important to note that we may not directly read off the
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Figure 3.5: Stereo correspondence distributions: (top) A correspondence at time t is visualised
(red marking). (bottom) When the scene depth at time t+x varies, the true correspondence (green
marking) varies along the epipolar ray (blue line). Best viewed in colour. See text for details.
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true correspondence at a specific point in time. From a point-to-line correspondence
distribution, we may only determine a region of high probability containing the true
correspondence. Clearly, this information could be used as a prior term in a spatial
approach.

3.1.2 Basic Temporal Coincidence Algorithm

From the previous examples, we have seen that corresponding pixels obey a similar
temporal signal. While single grey values are only a very weak cue for a correspondence,
really decisive are the repeated detection and matching of coincident events in the
temporal signal.

Temporal Coincidence Analysis builds on this idea and is an algorithm to learn corre-
spondence distributions. TCA is split into two phase, which are repeated over time: 1)
event detection, 2) matching of events based on a suitable descriptor. Matched events
are then accumulated over time and represent an empirical estimate of a correspondence
distribution. In the following, I show that this principle can be used to learn correspon-
dence distributions induced by depth or motion, for cameras with quite different optical
characteristics, as well as for cameras moving arbitrarily in the world, as long as the
relative orientation of the cameras is kept fixed. Under certain conditions, TCA may
also be used to estimate differential motion parameters (see Sec. 5). Besides learning
geometric relations between pairs of views I am also interested in learning the photomet-
ric relationships. In fact, these are intertwined tasks: the learning of correspondences
depends on a model of the photometric relationships and the learning of the photometric
relationships depends on estimated correspondences.

Obviously, the principle of observing and matching temporal changes within the sig-
nal will only be applicable when the scene is not essentially static. We may only learn
correspondences for those pixels where we actually observe changes over extended peri-
ods of time. However, taking a biological inspired view on vision we may ask what can
be learnt from static sensory input?

Before we turn to a formal treatment of TCA, let me present a concluding example for
an intuitive understanding of the proposed approach. Regard Fig. 3.6 (top left) which
shows 4 views from a multi-camera lab setup. For the blue marked pixel in the upper
left view (also denoted as seed pixel), its correspondence distribution within the other
views is sought. Note that the selected pixel lies within a textureless (=homogeneous)
area. Obviously, the pool of potentially corresponding pixels in the other views is very
large, when only considering spatial information. As a consequence, any classic spatial
feature based method would fail to reliably extract the true correspondence. In TCA,
we continuously determine whether the grey value at the selected pixel has changed
significantly between two time steps, and if so, an event is detected. A detected event
will then be summarised by a descriptor, which in this example is a simple binary vari-
able. Given an event has been detected at the seed pixel, all pixels in the other views
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showing an event too are determined. Then, events are matched based on the descrip-
tors. Matched pixel locations are then used to update the seed pixel’s correspondence
distribution per view. For the moment being, this update procedure may be thought of
as simply counting the number of coincident events.

In Fig. 3.6 (top right) an event is detected when the truck covers the seed pixel.
Then, for each pixel in the other views showing an event too, the probability of being
the true correspondence increases, as visualised by the overlaid correspondence distribu-
tion. Obviously, the more temporally coincident signal changes are detected, the higher
the correspondence probability will be. From Fig. 3.6 (bottom left and bottom right)
it can be seen that when the learning is performed over more and more frames, the
correspondence distributions converge to the area containing the true correspondence.
As we here use a binary descriptor, we do not expect to learn a pixel-to-pixel corre-
spondence distribution. This is due to the fact that an event at the seed pixel will be
matched to whole blobs in the other views. By using a different descriptor, e.g. the
absolute difference of the grey values, less pixels would be matched. This will be further
discussed in the following sections.

Figure 3.7 shows estimates of the correspondence distribution obtained after 100, 300
and 400 processed images, respectively.

Next, I will show that TCA can formally be derived, based on a probabilistic model.
In this model, the correspondence distribution is represented as a posterior distribution
which is updated over time.
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3 Temporal Coincidence Analysis

Figure 3.6: Lab setup experiment: 4 cameras face the same 3-D world. For the pixel marked with
a blue cross (seed pixel) its correspondence distribution in the other views is sought. Correspondence
distributions are learnt via TCA and are overlaid within each view. The more events are detected and
matched, the better the approximation of the true correspondence distribution. See text for details.
Figure only interpretable when viewed in colour.
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Figure 3.7: Evolving correspondence distributions for the lab setup: After 100, 300 and 400
processed images. Peak within each correspondence distribution marks the true correspondence. See
text for details.
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3.2 Related Work

In Sec. 2.3, principles and methods of correspondence estimation have been introduced.
In the following, I will briefly discuss methods which are more closely related to the
approach developed in this thesis.

In the approach of (Wexler et al. 2003) the epipolar geometry is learnt in a corre-
spondence free manner. For a small patch centred at a pixel xi in Ci, its corresponding
pixel in Cj is sought by computing and accumulating the similarity to all patches in
Cj over many frames. The similarity measure is based on the colour difference of the
regarded patches. Finally, they obtain an accumulator array which contains clusters
of matched points lying on the epipolar line. In this basic version of the algorithm no
temporal information is used. While they discuss an extension to penalise temporally
non-coherent matches, this is not further analysed. In contrast to this work, I solely
regard the temporal information of single pixels and hence make no assumption on the
topological ordering of the pixels as is done in (ibid.).

In (Felsberg et al. 2013), an iterative learning scheme for point correspondences is
presented. The approach is based on the channel representation of a set of local fea-
tures in the regarded views. It is assumed that the feature points only move along
2-D surfaces in 3-D space. Their approach differs from the one presented in this the-
sis, as I never compute local features and make no assumptions on the actual scene
geometry/interaction.

The so called Joint-Feature-Distributions (JDF) proposed in (Triggs 2001) share the
idea of a correspondence distribution. While I make no assumptions on the parametric
form of this distribution, the JDFs are parametric-models of correspondence relations
derived for the affine and projective geometry. Once trained, they allow to generate
spatial priors for a correspondence given a selected pixel. While JDFs are trained on a
set of given correspondences, I never explicitly solve the correspondence problem and I
do not assume to have ground truth correspondence available.

Certainly the idea of analysing the temporal change of single pixels is not exclusive to
this thesis but appears in several forms. Besides specific (software) algorithms, hardware
architectures, so called Address-Event Representation (AER) vision sensors have been
developed (Delbrück et al. 2010; Mahowald 1994; Mead and Mahowald 1988). An AER
sensor mimics the human retina and hence is often referred to as silicon retina. These
vision sensors represent a perceived scene by means of intensity changes only and reduce
redundant information. In this representation, static parts of the scene are discarded, as
their intensity values only vary within the noise range. In contrast to a standard frame
based camera, an AER sensor operates at a much higher temporal resolution (several
hundred fps). However, these sensors also operate at a much smaller spatial resolution
(from 32 × 32 pixels to 304 × 240 pixels) (Delbrück et al. 2010). While an AER type
representation can be computed from a standard camera, the temporal resolution will
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be limited by the camera used and will usually be much smaller than the temporal
resolution of an AER sensor.

Based on an AER type representation, in (Humenberger et al. 2012) an algorithm for
(person) fall/tumble detection is developed, considering relative light intensity changes
only. In (Carneiro et al. 2013), an algorithm for scene reconstruction is proposed.
The authors of (Kogler et al. 2009) are interested in using an AER sensor as a cheap
replacement for a standard camera in a pre-crash detection system in an automotive
environment. They apply standard frame based stereo algorithms to the output of a
stereo AER setup. According to the authors, the conversion of the AER to a frame
based representation is probably too time consuming to handle the high frame rates of
the AER sensor, thus limiting its advantage of a high frame rate.

In (Benosman et al. 2011), an algorithm to learn epipolar geometry, based on an AER
sensor is proposed. Similar to the presented approach, they regard so called co-activation
sets, and accumulate matched events over time. While I utilise a similar representation
of the input data (=events), I work on a standard camera sensor. Compared to (ibid.),
I present a probabilistic modelling and believe to be the first in exploiting the temporal
coincidence approach for learning the statistics of stereo and image motion for real world
camera setups. It is interesting to note that methods in which evidence on the sought
entities is accumulated instead of directly being computed are often referred to as Hough
voting schemes (Gall et al. 2011), in reference to the well-known Hough transform to
detect lines, circles (Duda and Hart 1972; Hough 1962) but also arbitrarily shaped
objects (D. H. Ballard 1981).

There are also frame based (=standard camera) approaches, which are related to the
presented approach. I consider the work by Szlávik et al. in a series of papers (Szlávik
et al. 2004, 2007; Szlávik and Szirányi 2006; Szlávik, Szirányi, and Havasi 2007; Szlávik,
Szirányi, Havasi, and Benedek 2005) and based on that the work by Ermis et al. (Ermis
2010; Ermis et al. 2008) as the perhaps closest methods to the one presented by me.

Szlávik aims at finding point-to-point correspondences by detecting pixels in two views
with similar motion change history. Specifically, Szlávik (Szlávik 2006) determines so
called co-motion statistics between pairs of cameras. A co-motion is defined as the ob-
servation of concurrent motion at a fixed pixel in one view and all other pixels in the
other view. These co-motions are accumulated over time and form so called remote (co-
motion across two views) and local (co-motion within a single view) co-motion maps.
Within each view, binary motion masks are computed based on background subtrac-
tion. Using a heuristic, these motion masks are subject to a post processing step using
morphological operators to generate closed blobs for moving objects. Then, co-motions
are recorded over the frames of long image sequences. Next, correspondence candidates
are extracted from the remote maps as those pixel locations maximising the count of
concurrent motion. Based on an engineered pipeline, the correspondence candidates are
filtered and fine-tuned. This includes discarding candidates where in a local neighbour-
hood no, or only few other correspondence candidates can be found (principle of spatial
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coherence (Zhang et al. 1995)). Furthermore, pixels which show nearly continuous mo-
tion are discarded from the co-motion maps (=count is set to zero) as a pixel showing
continuous motion would lead to high co-motion counts also for non-corresponding pix-
els. Obviously, when only considering the binary information of motion/no motion
the discriminative power between corresponding and non-corresponding pixels vanishes,
given that they show continuous motion. The remaining correspondence candidates are
then fitted to specific geometric models, i.e., a homography or the fundamental matrix
based on RANSAC (Fischler and Bolles 1981; Szlávik, Szirányi, and Havasi 2007), and
a final set of correspondence is extracted and fine-tuned by an iterative process, which
aims at minimising the symmetric transfer error. Beyond that, in (Szlávik, Szirányi,
Havasi, and Benedek 2005) an entropy-based criterion is incorporated to reduce the
number of false correspondences due to flashes or random noise on the background. As
Szlávik aims at learning point-to-point correspondences only, their processing pipeline
cannot handle scenes which deviate from the ground plane assumption. Therefore, in
scenes where the moving objects will not lie on a plane, the algorithm is fed with the
output from a shadow detector, as shadows usually lie within the ground plane. Note
that the approach by Szlávik is robust to illumination difference among the views, at
least to some extent. This is due to the fact that co-motions are detected based on
the change mask only, but not on relative intensity differences. In contrast, I explicitly
model illumination differences and introduce the concept of the Grey Value Transfer
Function (cf. Sec. 3.6).

The work by Ermis (Ermis 2010) shares the basic processing steps with the approach
by Szlávik. However, Ermis’ primary interest lies in efficient information processing and
communication within a camera network. He defines geometry independent features,
which can be used for different tasks in multi-camera systems. These include correspon-
dence estimation or abnormal behaviour detection. He introduces the activity feature,
which boils down to the output of a change detector. The activity feature is detected
at a specific pixel, given that the pixel location is subject to object motion, similar as
the co-motion feature by Szlávik. Ermis attempts to give a formal definition of when
the activity feature is scene/geometry independent. This is done under the idealised
assumption that the observed scene essentially lies in a plane (=2-D). The definition of
the activity feature is based on analysing the temporal duration of an activity feature in
3-D, when it is reprojected to separate camera views. Given that a 3-D point is visible
in two views and that the scene depth is constant, the activity feature for corresponding
pixels will be observable for the same amount of time. However, it is my understanding
that this is actually directly given by epipolar geometry. The true correspondence for
a pixel xi in view Ci will be a pixel zj in view Cj , which will not change as long as the
scene depth does not vary. Here, it does not matter whether one analyses the raw image
data, or the output from a change detector.

Given that the depth profile of the scene is not essentially static (=3-D) the theory for
the 2-D case will in general not hold. Ermis then defines varying occupancy durations
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and so called spurious activities. A spurious activity is generated when a signal change
can only be seen from one of the cameras, due to an occluder in the other camera. To
handle general 3-D (non-planar) scenes, the motion masks are subject to a so called
aspect ratio normalisation. Here, a motion blob will be replaced with the bottom part
of its enclosing bounding box, given that the height/width ratio is above some threshold.
The aspect ratio normalisation uses higher level information (on the object level) rather
then processing single pixels only, as I do. This also induces assumptions on the signal
topology and the method could not be applied to, e.g., permuted sequences. In (Clarot
et al. 2009), the approach is used in a camera network topology recovery task.

There are several aspects in which the TCA approach differs from the one by Szlávik
and the one by Ermis, which will be discussed in the following. Firstly, I am inter-
ested in learning general mappings in multi-camera setups (=stereo) but also for single
views (=motion). In contrast, Szlávik and Ermis focus on estimating point-to-point
correspondences in multi-camera setups only.

In a general 3-D scene, pixels will in general not correspond to a single pixel in a
second view, but to a set of pixels, as explained by n-view geometry. I accept this
fact and my learning scheme can represent point-to-line correspondences. In contrast,
Szlávik and Ermis need to handle general 3-D scenes as a special case and need to change
the input data of their algorithms to the output of a shadow detector or the aspect ratio
normalised change masks, respectively. In contrast, TCA works on the single pixel level
and does not use any high level image information (shadows, interpretation of object
masks). Furthermore, I provide a probabilistic model where with each correspondence
a confidence measure is associated. This allows to detect false correspondences in a
statistically principled way. Besides learning stereo correspondences, I will show that
TCA may also be used to learn other mappings such as motion or to infer instantaneous
motion by means of yaw rates (cf. Sec. 5).

To summarise, I do not aim at representing the epipolar relation by an algebraic
expression, but my primary representation is a correspondence distribution estimated
from the concurrent activity of single pixels. The method allows for arbitrary shapes of
the distribution which may depend strongly on the relative sensor orientation, sensor
and lens system geometry, and the type of typical motion. Of course, homographies or
F-matrices can be computed from TCA results as well.

3.3 A Theory of Matching

In the following, I will formally derive the Temporal Coincidence Analysis (TCA) ap-
proach, based on a probabilistic model. I abstract from the matching of visual data and
formulate the matching problem for two sets of unordered signal wires, among which
corresponding signal wires are to be determined (see Fig. 3.8). Finally, the model can

37



3 Temporal Coincidence Analysis

Figure 3.8: Bunch of signals: Given two sets of unordered signal wires, I derive a probabilistic
model to determine corresponding signal wires. Image source: Deutsche Presse Agentur (dpa).

be instantiated for a specific application, e.g., in order to estimate motion or stereo
correspondence distributions.

3.3.1 Definitions and Problem Statement

Let h[n] and g[n] be discrete sequences of random variables, with n = 0, .., N , also
denoted as channels or signals in the following. I consider h[n] and g[n] to be the noisy
observations from source sequences sh[n] and sg[n], where the source sequences may
be transformed via deterministic functions φh and φg, respectively. The deterministic
functions φh and φg depend on a set of parameters θh and θg, respectively. Let v[n]
and w[n] be sequences modelling the observation noise, then the complete observation
model is given as:

h[n] = φh(sh[n], θh) + v[n], (3.3)

g[n] = φg(sg[n], θg) + w[n]. (3.4)

Let h[n], g[n], sh[n], sg[n], v[n] and w[n] denote realisations of the previously defined ran-
dom sequences. Next, assume that only the realisations of h[n] and g[n] are observable
and that the individual source and noise sequences are hidden from us.

The problem addressed here can now be defined as follows: given an observed signal
g[n] and a set of N independent observed signalsH = {hi[n]}N , select a hi[n] ∈ H, which
maximises the probability that g[n] and hi[n] are observations of the same source signal,
with shi [n] = sg[n]. In other words, choose hi[n] ∈ H which most likely corresponds to
g[n].

To this end, I will now derive a posterior distribution over the correspondence can-
didates. In order to keep the notation uncluttered, I may denote the observed channel
hi[n] as a vector hi, and similarly for the other involved variables. Hence, hi is to be
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understood as a vector of observed signal values. I will also not index the involved dis-
tributions with the associated rv., as this will be clear from the context. For example,
instead of ph (h) and pg (g), we may simply write p (h) and p (g), but note that the
underlying pdfs are not necessarily the same. Note that even in the noise free case, I do
not assume that the values of corresponding channels are the same, but that they are
related by functions φh and φg. This is important, and will later allow us to represent,
e.g., affine transformations of the input data to model illumination differences among
views.

Let ci ∈ c with i = 1, .., N be the symbol denoting that observation signal hi corre-
sponds to observation signal g, such that g ↔ hi holds. Let us now derive the posterior
probability distribution Pr[ci|{hj}, g] of ci, given observation signal g and all candidate
signals in H. Here, the notation {hj} is used to enumerate all elements of H.

From the joint density p (ci, {hj}, g) and the basic rules of probability we obtain:

p ({hj}, g|ci) · Pr[ci] = p (ci, {hj}, g) = p ({hj}, g) · Pr[ci|{hj}, g], (3.5)

⇒

Pr[ci|{hj}, g] =
p ({hj}, g|ci) · Pr[ci]

p ({hj}, g)
. (3.6)

Note that the sought posterior is a discrete probability distribution, since the set of all
ci is discrete. Next, I will simplify 3.6 in several ways but will not make any specific
assumptions about the actual distributions of the signals.

Note that the denominator in Eq. 3.6 is a constant as it does not depend on ci.
Equation 3.6 may thus be rewritten according to:

Pr[ci|{hj}, g] =
p ({hj}, g|ci) · Pr[ci]

p ({hj}, g)︸ ︷︷ ︸
=Z1

, (3.7)

=
1

Z1
· p ({hj}, g|ci) · Pr[ci]. (3.8)

Based on the assumption that the individual channels in H are independent of each
other, we may rewrite Eq. 3.8 by expanding {hj} and apply the product rule according
to:

Pr[ci|{hj}, g] =
1

Z1
· p ({hj}, g|ci) · Pr[ci], (3.9)

=
1

Z1
· p (h1, ...,hn, g|ci) · Pr[ci], (3.10)

=
1

Z1
· p (h1, ...,hn−1, g, |hn, ci) · p (hn|ci)︸ ︷︷ ︸

=p(hn) for all j 6= i

·Pr[ci]. (3.11)
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Due to the assumption that the candidate channels are independent of each other, we
see that the term p (hn|ci) is independent of ci for all j 6= i and simplifies to p (hn).
For the same reason, the term p (h1, ...,hn−1, g, |hn, ci) in Eq. 3.11 may be simplified
to p (h1, ...,hn−1, g, |ci).

Using the same reasoning for all candidate channels, we may rewrite Eq. 3.11 accord-
ing to:

Pr[ci|{hj}, g] =
1

Z1
· p (h1, ...,hn−1, g, |hn, ci) · p (hn|ci) · Pr[ci], (3.12)

=
1

Z1
· p (h1, ...,hn−1, g, |ci) · p (hn) · Pr[ci], (3.13)

=
1

Z1
· p (hi, g|ci) ·

∏
j,j 6=i

p (hj) · Pr[ci]. (3.14)

The posterior of ci in Eq. 3.14 depends on the product term over the candidate channels,
which obviously is different for each ci ∈ c. However, we may relax this dependence into
a constant term as follows. We multiply Eq. 3.14 with p(hi)

p(hi)
and rearrange according

to:

Pr[ci|{hj}, g] =
1

Z1
· p (hi, g|ci) ·

∏
j,j 6=i

p (hj) · Pr[ci], (3.15)

=
1

Z1
· p (hi)

p (hi)
· p (hi, g|ci) ·

∏
j,j 6=i

p (hj) · Pr[ci], (3.16)

=
1

Z1
· 1

p (hi)
· p (hi, g|ci)

∏
j,j 6=i

p (hj) · p (hi) · Pr[ci], (3.17)

=
1

Z1
· 1

p (hi)
· p (hi, g|ci)

∏
j

p (hj)︸ ︷︷ ︸
1
Z2

·Pr[ci], (3.18)

=
1

Z1
· 1

Z2
· p (hi, g, |ci)

p (hi)
· Pr[ci]. (3.19)
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Finally, we may rearrange and further simplify Eq. 3.19 to obtain:

Pr[ci|{hj}, g] =
1

Z1
· 1

Z2
· p (hi, g, |ci)

p (hi)
· Pr[ci], (3.20)

=
1

Z1
· 1

Z2
· p (g|hi, ci) · p (hi|ci)

p (hi)
· Pr[ci], (3.21)

=
1

Z1
· 1

Z2
· p (g|hi) · p (hi)

p (hi)
· Pr[ci], (3.22)

=
1

Z1
· 1

Z2
· p (g|hi) · Pr[ci]. (3.23)

Let us now derive the conditional density p (g|hi) from Eq. 3.23. To keep the notation
uncluttered, I may drop index i of hi but note that I will assume from now on that
channels g and h correspond. From the joint distribution p (h, g) we have:

p (h, g) = p (g|h) · p (h) , (3.24)

⇒

p (g|h) =
p (h, g)

p (h)
. (3.25)

Let us now derive the joint distribution p (h, g). According to the observation model in
Eq. 3.4 we know that the joint distribution depends on the hidden source signal s. Thus
p (h, g) is given by marginalising the joint distribution p (h, g, s) over s according to:

p (h, g) =

∫
s
p (h, g, s) ds. (3.26)

Next, we expand Eq. 3.26 as follows:

p (h, g) =

∫
s
p (h, g, s) ds, (3.27)

=

∫
s
p (h, g|s) · p (s) ds, (3.28)

=

∫
s
p (h|g, s) · p (g|s) · p (s) ds, (3.29)

=

∫
s
p (h|s) · p (g|s) · p (s) ds, (3.30)

where the transition from Eq. 3.29 to Eq. 3.30 is due to the conditional independence
of h and g when s is known and is assumed to be the true cause of observing h and g.
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3 Temporal Coincidence Analysis

Furthermore, if we assume that s is known, then observations h and g are distributed
according to the assumed noise distribution, such that we have:

p (h|s) = p (v = h− s) , (3.31)

p (g|s) = p (w = g − s) . (3.32)

Finally, we obtain the joint distribution as:

p (h, g) =

∫
s
p (v = h− s) · p (w = g − s) · p (s) ds. (3.33)

Inserting the joint distribution from Eq. 3.33 in the conditional distribution in Eq. 3.25,
we obtain:

p (g|h) =

∫
s p (h|s) · p (g|s) · p (s) ds

p (h)
. (3.34)

If we assume the observation signals to be noise free, the pdfs p (h) and p (g) are simply
given by the pdf of the source signal according to:

p (h) = p (s) , (3.35)

p (g) = p (s) . (3.36)

I stress that the densities for noise free observations are defined only for completeness. If
for real world data, the observations would be noise free, the matching problem would be
trivial and any correspondence candidate could be excluded upon the first observation
of differing symbols.

For the case of noise afflicted observations, we obtain the pdfs p (h) and p (g) again
by marginalisation over the source signal:

p (h) =

∫
sh

p (h, sh) dsh, (3.37)

=

∫
sh

p (h|sh) · p (sh) dsh, (3.38)

=

∫
sh

p (v = h− sh) · p (sh) dsh, (3.39)

and

p (g) =

∫
sg

p (g, sg) dsg, (3.40)

=

∫
sg

p (g|sg) · p (sg) dsg, (3.41)

=

∫
sg

p (w = g − sg) · p (sg) dsg. (3.42)

42



3.3 A Theory of Matching

For completeness, let us also derive the joint distribution for non-corresponding channels.
The joint pdf p (h, g) of independent observation signals h and g is given according to:

p (h, g) = p (h) · p (g) , (3.43)

=

∫
sh

p (h, sh) dsh ·
∫
sg

p (g, sg) dsg, (3.44)

=

∫
sh

p (h|sh) · p (sh) dsh ·
∫
sg

p (g|sg) · p (sg) dsg, (3.45)

=

∫
sh

p (v = h− sh) · p (sh) dsh ·
∫
sg

p (w = g − sg) · p (sg) dsg. (3.46)

The derivation of the posterior distribution in Eq. 3.6 is now complete. In order to
instantiate the model and to compute the posterior, we now have to specify the individ-
ual distributions and evaluate Eq. 3.23 for each candidate channel. The computation
of the posterior becomes extremely easy if we assume that the individual signals are
represented in their innovations representation. This means that we regard each signal
as a sequence of independent and identically distributed symbols.

Then, the posterior distribution factors and may be updated sequentially at each time
step, as will be shown next.

3.3.2 Temporal Update Scheme

The main result I derive and obtain in the following is a temporal update scheme for
the posterior distribution Pr[ci|{hj}, g]. I assume that all channels are given in (or are
converted into) their innovations representation and are i.i.d. sequences. This implies
that we may update the posterior sequentially.

Let us now assume that we observe one symbol per signal and time step t. The
posterior distribution of ci, given observations hj [n = t] and g[n = t] at time t is then
given as:

Pr[t] [ci|{hj [n = t]}, g[n = t]] =
1

Z1
· 1

Z2
· p (g[n = t]|hi[n = t]) · Pr[t] [ci] , (3.47)

with ∑
i

Pr[t] [ci|{h[n]j,t}, g[n]t] = 1. (3.48)

The term Pr[t] [ci] in Eq. 3.47 represents the prior probability or our prior belief that the
signal g and the i’th candidate channel correspond. At time t, we want to incorporate
our knowledge about the posterior distribution from previous time steps. To this end,
the posterior distribution of ci at time t− 1 is used as the prior distribution over ci at
time t. Initially, before any signal observations are available, we have no preference for
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3 Temporal Coincidence Analysis

a specific channel. Therefore, we represent the prior at time step t = 0 (=init) by means
of a flat (=uniform) prior with:

Pr[init] [ci] =
1

N
, (3.49)

where N denotes the number of correspondence candidates.

We may now iteratively update both the posterior distribution and the prior distri-
bution as follows. At time step t = 0 we have:

Pr[0] [ci|{hj [n = 0]}, g[n = 0]] =
1

Z1
· 1

Z2
· p (g[n = 0]|hi[n = 0]) · Pr[init] [ci] . (3.50)

At time t we have:

Pr[t] [ci|{hj [n = t]}, g[n = t]] =
1

Z1
· 1

Z2
· p (g[n = t]|hi[n = t]) · Pr[t] [ci] , (3.51)

with

Pr[t] [ci] = Pr[t−1] [ci|{hj [n = t− 1]}, g[n = t− 1]] . (3.52)

Note that there is no need to explicitly solve for the normalisation constants Z1 and Z2,
in order to guarantee that the posterior distribution at time t is properly normalised.
First, we observe that the prior distribution of c at time t−1 is normalised by definition
(see initialisation step). The posterior distribution at time t is then normalised by
dividing each Pr[t] [ci|{hj [n = t]}, g[n = t]] by the sum of the non-normalised posterior:

∑
i

Pr[t] [ci|{hj [n = t]}, g[n = t]] = 1, (3.53)

∑
i

1

Z1
· 1

Z2
· p (g[n = t]|hi[n = t]) · Pr[t] [ci] = 1, (3.54)

1

Z1 · Z2

∑
i

p (g[n = t]|hi[n = t]) · Pr[t] [ci] = 1, (3.55)∑
i

p (g[n = t]|hi[n = t]) · Pr[t] [ci] = Z1 · Z2. (3.56)

To summarise, the posterior distribution at time t is properly normalised by setting the
product of Z1 · Z2 to the sum of the non-normalised posterior.
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Due to the multiplication of potentially very small numbers, the update procedure may
run into numerical instabilities. This may be circumvented by computing the posterior
distribution in the log domain. Taking the log of Eq. 3.51 we obtain:

log
[
Pr[t] [ci|{hj [n = t]}, g[n = t]]

]
= log

[
1

Z1
· 1

Z2
· p (g[n = t]|hi[n = t]) · Pr[t] [ci]

]
,

(3.57)

= − logZ1 − logZ2 + log [p (g[n = t]|hi[n = t])]

+ log
[
Pr[t] [ci]

]
. (3.58)

However, to compute the posterior in the log domain, we would now have to explicitly
solve for the normalisation constants Z1 and Z2. Instead, I propose to approximate the
posterior as:

log
[
Pr[t] [ci|{hj [n = t]}, g[n = t]]

]
= − logZ1 − logZ2 + log [p (g[n = t]|hi[n = t])]

+ log
[
Pr[t] [ci]

]
, (3.59)

→ log [p (g[n = t]|hi[n = t])]︸ ︷︷ ︸
data term

+ log
[
Pr[t] [ci]

]︸ ︷︷ ︸
accumulator

. (3.60)

The approximate model may be updated sequentially as well. The data term in Eq.
3.60 will be evaluated at each time instant and its result is added to the prior term, i.e.,
the posterior from the previous time step. The prior term at time t may be interpreted
as an accumulator, containing the summed data terms from previous time steps. I
implement the data term as a threshold operation based on a similarity measure of
pairs of signal values. Given that m candidate signals pass the threshold test at time t,
I assign each candidate channel a probability of 1

m of being the true correspondence. I
then update the accumulator cell indexed by the candidate channel i as:

At[i] =

{
log( 1

m) +At−1[i], threshold test passed,

At−1[i], else.
(3.61)

Due to log( 1
m) = log(1) − log(m) = − log(m), we may update the accumulator with

positive weights given by log(m) which only changes the sign.

3.3.3 Posterior Entropy and Conditional Update Scheme

Previously, we have seen that the channel matching problem, as defined in Sec. 3.3.1,
may be formulated by means of a probabilistic model which leads to a posterior distri-
bution over the correspondence candidates. The most likely corresponding channel is
then given as the i-th channel, for which the posterior distribution attains its maximum
value.
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3 Temporal Coincidence Analysis

Let us now assume that the system which implements the posterior update scheme
has to operate under an energy constraint. I will assume that each posterior update is
associated with a constant cost term Qp and the goal is to learn the true correspondence,
while minimising the consumed energy. To this end, we first have to answer the question
when does the posterior encode a reliable estimate of the true corresponding channel, or
in other words, when have we learnt enough? I address this question by means of basic
results of information theory. Specifically, I will regard the entropy of the posterior
distribution, as described in the following.

Let C be a discrete random variable, which may take on values in the domain
[1, .., |H|]. Let C be distributed according to the posterior distribution derived pre-
viously with:

fC [ci] = Pr[C = ci|{hj}, g]. (3.62)

We will now regard the entropy of random variable C, which is a measure of its un-
certainty (Cover and Joy Thomas 2009, p. 13). The entropy of C under the posterior
distribution is given as (ibid., p. 14):

H(C) = E
[
log2

1

fC [ci]

]
= −

∑
ci

fC [ci] · log2 fC [ci] . (3.63)

As the log2 is taken w.r.t. base 2, the entropy is measured in bits (ibid., p. 14). If
rv. C is uniformly distributed, every possible outcome (event) is equally likely, hence,
the uncertainty about an unobserved event is maximum. Therefore, the entropy will be
maximum for a uniformly distributed rv.. The entropy will be minimum, given that the
probability mass concentrates at a single event as the uncertainty about an unobserved
event is minimum.

According to Eq. 3.49, the posterior will be initialised as a uniform distribution.
As each of the N candidate channels may be the true corresponding channel with a
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probability of 1
N , the uncertainty about the true correspondence is maximum. Hence,

the entropy of C is maximum and is given by:

H(C)init = −
∑
ci

fC [ci] · log fC [ci] , (3.64)

= −
∑
ci

1

N
· log2

1

N
, (3.65)

= −
∑
ci

1

N
· (log2(1)− log2N), (3.66)

= −
∑
ci

− log2N

N
, (3.67)

= −N · − log2N

N
, (3.68)

= log2N. (3.69)

We may now address the question, when we have learnt enough. When the posterior
is updated over time, we expect to learn or gain information about the true correspon-
dence, such that the uncertainty decreases. This means that the entropy of the posterior
distribution should decrease. As already mentioned, the entropy will be minimum (=0)
when the probability mass concentrates at a single event, i.e., when the probability for
one of the candidate channels is 1. Of course, this has to be regarded as a theoretical
lower limit, which will rarely be achievable in practice, due to signal noise.

Based on the entropy, we may also asses how much we have learnt about the cor-
respondence after each posterior update. This allows to differentiate between ’useful’
and ’useless’ posterior updates. To this end, I regard the difference of the posterior’s
entropy between two time steps, defined as:

∆H(C) = H(C)t −H(C)t+1. (3.70)

The larger this difference is, the more we learn about the correspondence. The smaller
the difference, the less we learn about the correspondence and we may completely discard
this update and simultaneously save energy.

3.3.4 Instantiating the Model - Gaussian Case

Let us now instantiate the model derived in Sec. 3.3.1. To this end, we have to specify
the source signal and noise distribution and derive the functional form of the posterior
in Eq. 3.51. For the moment being, I assume that the deterministic mapping functions
φh and φg represent the identify function. We may also assume that these mappings
have been compensated already, and that uncertainties of this process are normally
distributed which may then be subsumed into the observation noise term.
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Recall from Sec. 3.3.1 that I assume the signals to be sequences of i.i.d. symbols. To
keep the notation uncluttered, I may drop the index [n] from all involved signals and
write s, h etc. to denote these scalar random variables.

I assume that the source signal is Gaussian distributed according to:

p (s) ∼ N (0, σ2s). (3.71)

The conditional distributions of signals h and g, given an observed source signal corre-
spond to the noise distributions, which are assumed to be Gaussian with mean 0 and
channel specific variances:

p (h|s) ∼ N (s, σ2h|s), (3.72)

p (g|s) ∼ N (s, σ2g|s). (3.73)

Clearly, σ2h|s and σ2g|s are given as the assumed noise variances σ2v and σ2w, respectively.

The distributions of h and g are then given by marginalising the joint distributions
as given in Eq. 3.39 and Eq. 3.42 as:

p (h) =

∫
sh

p (h|sh) · p (sh) dsh,

=
1√

2 · π · (σ2h|s + σ2s)
· exp

(
− h2

2 · (σ2h|s + σ2s)

)
,

∼ N (0, σ2h|s + σ2s), (3.74)

and similarly for p (g):

p (g) ∼ N (0, σ2g|s + σ2s). (3.75)

Next, let us derive the conditional distribution p (g|h) as is needed to evaluate Eq. 3.51.
We start with the derivation of p (g, h). As shown in Eq. 3.33, we have to marginalise
the joint distribution p (g, hi, s) w.r.t. s. For the Gaussian model we obtain1:

p (hi, g|ci) =

exp

(
−
h2σ2

g|s+σ
2
s(g−h)2+g2σ2

h|s

2σ2
g|s

(
σ2
h|s+σ

2
s

)
+2σ2

h|sσ
2
s

)

2π

√
σ2g|s

(
σ2h|s + σ2s

)
+ σ2h|sσ

2
s

. (3.76)

1via pen and paper or with a computer algebra program as is done here
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The joint distribution in Eq. 3.76 is again Gaussian. We can determine the mean
and covariance of this distribution, e.g., via ’completing the square’ (cf. (Bishop 2006,
p. 86)). To this end, we regard the term in the exponential of Eq. 3.76 and rearrange
to obtain the canonical form of the exponential term of a multivariate Gaussian. In our
case, this is given as (ibid., p. 86):

−1

2
·
[
h g

]
Σ−1

[
h
g

]
+
[
h g

]
Σ−1

[
µh
µg

]
+ const. (3.77)

As the exponential in Eq. 3.76 contains no linear terms in h or g, we have that µh =
µg = 0. For the quadratic form, we determine the precision matrix Σ−1 and invert it to
obtain the covariance matrix:

Σ =

[
Σhh Σhg

Σgh Σgg

]
=

[
σ2h|s + σ2s σ2s

σ2s σ2g|s + σ2s

]
. (3.78)

Finally, the joint distribution in 3.76 is given as:

p (hi, g|c) ∼ N

([
h
g

]
;

[
0
0

]
,

[
σ2h|s + σ2s σ2s

σ2s σ2g|s + σ2s

])
. (3.79)

Based on standard results for the multivariate Gaussian distribution, we obtain the
conditional distribution p (g|hi), which will be Gaussian again. The conditional mean
and variance are given as (ibid., p. 87):

µg|h = µg + ΣghΣ−1hh (h− µh), (3.80)

Σg|h = Σgg − ΣghΣ−1hhΣhg, (3.81)

and hence:

p (g|h) ∼ N

([
h
g

]
;

σ2s
σ2h|s + σ2s

· h, σ2g|s +
σ2h|s · σ

2
s

σ2h|s + σ2s

)
. (3.82)

(3.83)

For the following discussion, we will also need the joint distribution of non-corresponding
channels. This distribution is given according to Eq. 3.46. Under the Gaussian model,
this distribution has a diagonal covariance matrix and is given as:

p (h, g|h 6↔ g) ∼ N

([
h
g

]
;

[
0
0

]
,

[
σ2h|s + σ2s 0

0 σ2g|s + σ2s

])
. (3.84)

Let us now regard Fig. 3.9, which visualises prototypical joint pdfs for non-corresponding
and corresponding channels under the Gaussian model.
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joint pdfs under the Gaussian model

non-corresponding channels corresponding channels diagonal cross sections
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Figure 3.9: Joint distributions under the Gaussian model: Prototypical joint distributions of
(left) non-corresponding and (middle) corresponding channels. (right) Cross section of the pdfs. See
text for details.

Parameters were set to σ2s = 8, σ2h|s = σ2g|s = 4. Note that the plots of the joint pdfs
were set to the same scale. As expected, the joint pdf for independent channels is
isotropic, while the joint pdf for dependent channels is anisotropic. We see that the rel-
ative propensity of observing largely different symbols is larger for independent channels
than for corresponding channels. Furthermore, we see that the relative propensity of
simultaneously observing two symbols at the low or high end of the observable intervals
is considerably larger for corresponding channels than for independent channels. This
can also be seen from the diagonal cross sections of the pdfs in Fig. 3.9 (right). When
we update the posterior distribution, the model always assumes that the regarded chan-
nels correspond and only the joint pdf for corresponding channels is regarded (or the
conditional derived thereof). However, if the channels do not correspond, we expect to
observe largely different symbols, and the model will assign only a small probability to
them. From this, we may conclude that the probability of observing two rare signal
values at the same time is larger for corresponding channels than for non-corresponding
channels.

Figure 3.10 shows the distributions p (s), p (h) and p (g) for σ2s = 16 and σ2h|s = σ2g|s =
4. Now assume that we draw a sample from the hidden source signal with s = −8.
Figure 3.10 also shows the conditional distribution p (h|s = −8). If the channels h and
g truly correspond, the conditional pdf p (g|h) will be large for values of g which are
in the vicinity of h. However, if the channels do not correspond, the true conditional
pdf p (g|h) becomes p (g), which we see is centred around 0. From these plots, we see
that the relative propensity of observing extreme values of s is higher for corresponding
channels, than for non-corresponding channels.
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Figure 3.10: Exemplary distributions under the Gaussian model: For σ2
s = 16 and σ2

h|s = σ2
g|s =

4. A signal value s = −8 is sampled. See text for details. Figure only interpretable when viewed in
colour.

Let us now return to the discussion on how to decrease the entropy of the posterior
distribution (cf. Sec. 3.3.3). In order to decrease the entropy of the posterior distri-
bution, we should regard rare events. The probability of observing rare events will be
larger for corresponding channels than for non-corresponding channels, simultaneously
we minimise the probability for a false match.

3.3.5 Simulation and Comparison to Correlation

Let us now simulate the model derived in Sec. 3.3.4 as follows. We regard a seed
channel g and a set of |H| = 100 candidate channels. All channels are assumed to be
sequences of i.i.d. symbols, which are Gaussian distributed according to the derivations
in Sec. 3.3.4. Among the set of candidate channels, there is one channel hi for which
g ↔ hi holds. Recall that the model is parameterised by σ2s , σ

2
h|s and σ2g|s. Throughout

the following I set σ2h|s = σ2g|s. I set σs = 10 and vary the observation noise σh|s
within [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Note that not the actual values of the parameters is
important for the analysis, but only their ratio. The chosen parameters simulate a noise
level from 10% to 100% of the source signal standard deviation. For each triplet of
parameters, I generate 100 test sets. Each test set consists of an observed seed channel
and H = {hj}N , N = 100 candidate channels. Each channel consists of 3, 000 samples
(=signal values ). A sample for the seed channel and the true corresponding channel is
generated as follows: First, I sample a source signal value from the distribution defined
in Eq. 3.71, and then sample g and h from Eq. 3.73 and Eq. 3.72, respectively.
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3 Temporal Coincidence Analysis

I then estimate the posterior distribution, based on the temporal update scheme de-
scribed in Sec. 3.3.2. Besides the posterior model, I will also regard the approximate
model of the posterior as defined in Eq. 3.61. If the samples originate from the same
source signal, I allow them to vary within a matching envelope, where the extent of the
envelope is given by the standard deviation of the observation noise. The threshold test
for the approximate model is then defined as:

|g − h| < σg|s + σh|s. (3.85)

I will also compare the proposed model to a standard correlation approach. To this end,
I perform a full correlation of the seed signal channel g to all other candidate channels
{hj}. The correlation of the seed channel and the i′th candidate channel is given as
(Therrien 1992, p. 140):

ρg,hi =
Cov(g,hi)

σgσh
, (3.86)

and the corresponding sample correlation coefficient as:

r̂g,hi =
1

N

∑N
n g[n] · hj [n]

σgσh
. (3.87)

For all three methods, I estimate the correspondence over all 3,000 samples. Recall that
I would like to minimise the number of update steps and only perform an update, when
we may expect to gain information about the true correspondence. In Sec. 3.3.3, I
hypothesised that we gain the more information the rarer the regarded signal symbols
are. This should result in larger (negative) entropy differences between update steps,
hence, the curve of the entropy should decrease faster. In order to analyse the influence
of the rareness of the individual symbols on the correspondence estimate I proceed as
follows. For the i′th signal sample, I perform the model updates only when p (g) <= p (τ)
holds. I vary τ within [0, 1 · σg|s, 2 · σg|s, 3 · σg|s, 4 · σg|s]. For τ = 0, the model will be
updated for each of the 3,000 samples. The larger τ is set the less model updates will
be performed.

In Figs. 3.12 to 3.21, I visualise for each method the entropy of the correspondence
distribution and extract the estimated correspondence as the coordinates (=index of
the candidate channel in H) for which the distribution takes on its maximum value
(MAP estimate). Recall that for each noise level 100 independent test sets of seed
and candidate channels were generated. Hence, the plots shown in the following are
results which were averaged over the 100 test sets. Within the plots visualising if the
true correspondence was estimated, the plotted values are the fraction of successfully
estimated correspondences over the 100 test sets after the given number of model updates
and, hence, the plotted values are in the interval [0, 1]. While only the posterior is a

52



3.3 A Theory of Matching

posterior approximate posterior correlation

Figure 3.11: Sample posterior and approximations: (left) Posterior distribution estimated ac-
cording to the proposed model, (middle) approximate posterior, (right) correlation result. While the
approximate model and correlation are able to determine the true correspondence, the correspond-
ing distributions contain a noise floor, which consumes most of the probability mass. Hence, the
confidence in the correspondence is small. See text for details. Best viewed up scaled.

true probability distribution, I will also regard the results for the approximate model
and the correlation as a distribution over the correspondence candidates (upon proper
normalisation).

For reasons of a clear presentation, throughout the figures, I limit the plot range on
the abscissa to 40 (model update steps).

Regard Fig. 3.12. For a noise level of 10%, we see that the proposed model is able
to learn the correspondence after 5 model update steps on average. This is the case for
the full posterior update and when updates are skipped. Furthermore, the entropy of
the posterior distribution continuously decreases until a minimum is reached. However,
it is important to note that the number of observed signal values and the number of
performed model updates are in general different, only for the full posterior update
where the model is updated for every new symbol these numbers are identical.

The performance of the approximate model, w.r.t. the needed number of updates
until the true correspondence is learnt, is slightly worse than for the exact model as ex-
pected. We see that skipping certain updates, as described above, has a small influence
on the number of updates needed (less are needed), until the correspondence is learnt.
More importantly, we see that the entropy of the correspondence distribution decreases
only marginally. While the correlation model is also able to determine the true corre-
spondence, we see that considerably more update steps are needed. Similar as for the
approximate model, the entropy of the correspondence distribution does not decrease
substantially. The reason for this is that the approximate correspondence distributions
contain a ’noise floor’ which consumes most of the probability mass. The noise floor is
distributed rather uniformly, hence the entropy will be close to the maximum entropy
of the distribution (cf. Fig. 3.11).
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3 Temporal Coincidence Analysis

Regard Fig. 3.13. For a noise level of 20%, we see that the proposed model needs more
update steps until the true correspondence is learnt. Clearly, this is to be expected,
as the involved distributions are more flat and within each update step there are more
compatible signal values among the channels. Furthermore, we see that more likely
signal values may be skipped which allows to learn the correspondence with a fewer
number of update steps. This can also be seen from the entropy curves. The entropy
curve, when skipping all signal values with p (g) > p

(
4 · σg|s

)
decreases the fastest.

For the approximate model and the correlation, we also see that the correspondence
may be learnt with fewer update steps by skipping more likely signal values. However,
the proposed method clearly outperforms the approximate model and the correlation
approach. The entropy curves of the approximate and correlation model show a similar
behaviour as before, and do not decrease.

For noise levels of 30% to 50% we now see more clearly that when updates for likely
signal values are skipped, the less update steps are needed overall. See how the entropy
curve decrease the faster, the more likely update steps are discarded. This is the case for
all 3 models, however, the proposed method still outperforms the other two. Also note
that the approximate model and the correlation approach are on par for a noise level
of 40%, and that the correlation approach slightly outperforms the approximate model
for a noise level of 50%. This is to be expected, and is due to the chosen threshold test
for the approximate model, as defined in Eq. 3.85. For this threshold test and a noise
level of 50%, on average every second candidate channel will be matched.

When we further increase the noise level up to 80%, we see that the correspondence
curve starts to decrease for a skip level of p (g) > p

(
4 · σg|s

)
. Note that this is not

a failure case of the method but rather a matter of the script which generated the
figures for visualisation. For the given parameter settings, there will be on average
2 · (1 − F (τ, µ, σ2)) · N samples which will pass the threshold test p (g) <= p (τ) such
that a model update is carried out. Here, F is the cdf of the distribution associated
with the seed channel. In a set of 3,000 i.i.d samples and for a noise level of 80% the
expected number of samples which pass the threshold test and thus lead to a model
update is 2 · (1−F (4 ·σg|s, 0, σ2g)) · 3000 = 37.89. The plotted data points are initialised
to 0 (=failed to estimate the true correspondence), hence, the fraction of successfully
estimated correspondences over the 100 test sets after more than ≈ 38 model updates
will decrease to 0 simply because there are no available data points to be plotted.

For noise levels of 90% and 100% we obtain an average number of samples of 22.36
and 14.03, respectively. Obviously, these bounds also exist for the other noise and skip
levels. However, these cannot be seen from the plots as the actual numbers are always
above the plot range limit which was set to 40 update steps.

Let us now summarise the simulation results. We have seen that the true corre-
spondence can be learnt based on the proposed model, its approximate counterpart and
based on standard correlation. The proposed method clearly outperforms the other two.
The approximate model outperforms standard correlation w.r.t. the average number of
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3.3 A Theory of Matching

needed update steps, given that the threshold test performs better than chance. We have
seen that only for the proposed scheme, the entropy of the correspondence distribution
decreases as expected. For the approximate and correlation model, the distributions
contain a rather uniformly distributed noise floor, which consumes most of the prob-
ability mass and leads to an entropy which is close to the maximum entropy of the
correspondence distribution. For all three models, we have seen that we may decrease
the number of needed update steps, by discarding those update steps, in which the seed
signal value has a high probability to be observed. The more rarer a seed signal value
is, the less compatible candidate signal values exist (assuming a reasonable observation
noise level). In order to minimise the number of update steps, we should regard signal
values with minimum probability of being observed. However, in the extreme case we
need to wait forever, until a suitable observation is actually observed.
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Figure 3.12: Simulation results: Simulation results averaged over 100 runs, based on 3,000 sampled
signal values per channel and a noise level of 10% of the source signal standard deviation. See text
for details. Figure only interpretable when viewed in colour.
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Figure 3.13: Simulation results: Simulation results averaged over 100 runs, based on 3,000 sampled
signal values per channel and a noise level of 20% of the source signal standard deviation. See text
for details. Figure only interpretable when viewed in colour.
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Figure 3.14: Simulation results: Simulation results averaged over 100 runs, based on 3,000 sampled
signal values per channel and a noise level of 30% of the source signal standard deviation. See text
for details. Figure only interpretable when viewed in colour.
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Figure 3.15: Simulation results: Simulation results averaged over 100 runs, based on 3,000 sampled
signal values per channel and a noise level of 40% of the source signal standard deviation. See text
for details. Figure only interpretable when viewed in colour.

59



3 Temporal Coincidence Analysis

conditional update scheme
p
ro

po
se

d
m

od
el

0 10 20 30 40
0

2

4

6

8

10

# posterior update steps

E
 [ 

en
tr

op
y 

]

 

 
skip p(g) > p(0σ

g
)

skip p(g) > p(1σ
g
)

skip p(g) > p(2σ
g
)

skip p(g) > p(3σ
g
)

skip p(g) > p(4σ
g
)

0 10 20 30 40
0

1

0

1

0

1

0

1

0

1

0

full posterior update

skip p(g) > p(1σ
g
)

skip p(g) > p(2σ
g
)

skip p(g) > p(3σ
g
)

skip p(g) > p(4σ
g
)

co
rr

es
po

nd
en

ce
 fo

un
d 

=
 1

E [ # posterior update steps ]

p
ro

po
se

d
m

od
el

a
p
p
ro

x.

0 10 20 30 40
0

2

4

6

8

10

# approx. model update steps

E
 [ 

en
tr

op
y 

]

 

 

skip p(g) > p(0σ
g
)

skip p(g) > p(1σ
g
)

skip p(g) > p(2σ
g
)

skip p(g) > p(3σ
g
)

skip p(g) > p(4σ
g
)

0 10 20 30 40
0

1

0

1

0

1

0

1

0

1

0

approx. model 

skip p(g) > p(1σ
g
)

skip p(g) > p(2σ
g
)

skip p(g) > p(3σ
g
)

skip p(g) > p(4σ
g
)

E [ # approx. model update steps ]

co
rr

es
po

nd
en

ce
 fo

un
d 

=
 1

co
rr

el
a
ti

o
n

0 10 20 30 40
0

2

4

6

8

10

# correlation update steps

E
 [ 

en
tr

op
y 

]

 

 

skip p(g) > p(0σ
g
)

skip p(g) > p(1σ
g
)

skip p(g) > p(2σ
g
)

skip p(g) > p(3σ
g
)

skip p(g) > p(4σ
g
)

0 10 20 30 40
0

1

0

1

0

1

0

1

0

1

0

full correlation

skip p(g) > p(1σ
g
)

skip p(g) > p(2σ
g
)

skip p(g) > p(3σ
g
)

skip p(g) > p(4σ
g
)

E [ # correlation update steps ]

co
rr

es
po

nd
en

ce
 fo

un
d 

=
 1

Figure 3.16: Simulation results: Simulation results averaged over 100 runs, based on 3,000 sampled
signal values per channel and a noise level of 50% of the source signal standard deviation. See text
for details. Figure only interpretable when viewed in colour.
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Figure 3.17: Simulation results: Simulation results averaged over 100 runs, based on 3,000 sampled
signal values per channel and a noise level of 60% of the source signal standard deviation. See text
for details. Figure only interpretable when viewed in colour.
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Figure 3.18: Simulation results: Simulation results averaged over 100 runs, based on 3,000 sampled
signal values per channel and a noise level of 70% of the source signal standard deviation. See text
for details. Figure only interpretable when viewed in colour.
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Figure 3.19: Simulation results: Simulation results averaged over 100 runs, based on 3,000 sampled
signal values per channel and a noise level of 80% of the source signal standard deviation. See text
for details. Figure only interpretable when viewed in colour.
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Figure 3.20: Simulation results: Simulation results averaged over 100 runs, based on 3,000 sampled
signal values per channel and a noise level of 90% of the source signal standard deviation. See text
for details. Figure only interpretable when viewed in colour.
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Figure 3.21: Simulation results: Simulation results averaged over 100 runs, based on 3,000 sampled
signal values per channel and a noise level of 100% of the source signal standard deviation. See text
for details. Figure only interpretable when viewed in colour.
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3.4 TCA Algorithm

The Temporal Coincidence Analysis (TCA) approach, which was informally introduced
in Sec. 3.1 directly follows from the probabilistic model derived in Sec. 3.3. TCA is thus
a method to learn correspondence distributions among pairs of views in an autonomous
way.

In the following, I regard image sequences of a binocular camera setup with cameras
Ci and Cj . For a selected pixel xi ∈ Ii in the spatial domain of camera Ci (occasionally
also called first view or source view), its correspondence distribution over the spatial
domain of Cj (occasionally referred to as second view or target view) is sought. Similar
as defined in Sec. 3.3, I regard the temporal signal of each pixel as a signal channel,
which is the observation of a hidden source channel. The source channel is considered to
emit from the 3-D point, which we observe at a specific pixel location. Within each view,
the individual pixels (=channels) are assumed to be independent of each other. This
is certainly not the case for natural images and video and means that I disregard the
topological order of the image data. However, at the same time this induces invariances
to certain geometric transformations of the input data and lets us learn correspondences
for randomly permuted data. These invariances include translational and rotational
invariance and scaling to a large extend (see Sec. 4.2).

Recall that the signal channels of the probabilistic model are considered to be se-
quences of i.i.d. symbols. Clearly, the temporal signal of single pixels will contain
correlations. Therefore, I will not directly work on the pixel signals but instead deter-
mine an event signal which at least approximates an i.i.d. sequence. Each event signal
value is a function of temporally consecutive signal value pairs. While an event value
may be determined from longer signal value strings, we have to take into account that
a correspondence may only exist within short time intervals as discussed in Sec. 3.1.

3.4.1 Temporal Event Signal and Event Detection

Consider the temporal grey value signal of a pixel xi in camera Ci. I convert the grey
value signal into an event signal as follows. The event signal at time t is formed from
the original signal values si(xi, t−1) and si(xi, t) of the seed pixel at time instants t−1
and t via a monotone function fe according to:

fe,t(si(xi, t− 1), si(xi, t)). (3.88)

I define the event function as the squared difference of the input values

fe,t(a, b) = (a− b)2. (3.89)

This choice of the event function is certainly not the only which could be considered.
We could, e.g., also regard the signed difference of the signal values. However, as will
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Figure 3.22: Statistics of temporally subsequent grey values in natural video: (left) Joint
histogram of temporally subsequent grey values si(xi, t − 1) and si(xi, t) of a fixed pixel location
xi, (middle) normalised histogram of temporal grey value differences, (right) cdf of temporal grey
value differences.

be explained shortly, if nothing is known about the photometric differences among the
views, matching could fail, e.g., if the grey values for corresponding pixels are inverted.
Therefore, at least initially we should retain to the squared difference.

We may now estimate the correspondence distribution by estimating the posterior
distribution over the candidate (event) signals, as described in Sec. 3.3. Recall from
Sec. 3.3.5 that the number of update steps needed to convey the true association depends
on the probability of observing the respective signal values. The rarer the symbols, the
more information they convey about the true correspondence. Therefore, I update the
posterior only for significant events, or key events in the event signal, which are above
an event threshold value Te according to:

fe,t(a, b) > Te. (3.90)

When we regard the joint histogram of temporally subsequent grey values si(xi, t − 1)
and si(xi, t), we see that these show certain regularities. Regard Fig. 3.22, which shows
such a histogram for a fixed pixel location xi estimated from a natural image sequence.
Most of the time, the subsequent signal values are similar, as the histogram clusters
along the main diagonal. Furthermore, we see that the histogram counts systematically
decrease with increasing distance from the main diagonal. From this, we conclude that
a combination of two specific grey values occurs the less often, the larger their difference
is, since this is directly equivalent to the distance from the main diagonal in the joint
histogram. This can also be seen from Fig. 3.23, which shows joint histograms for
sequences GUBo1616 and GUCar. Therefore, key events are detected for rather large
threshold values Te. We can determine a suitable threshold Te from the cumulative
distribution function of pixel grey value differences as an α-percentile. This can be done
on a global basis, such that the threshold is held fixed over time, but could equally be
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Figure 3.23: Joint histograms for sequences GUBo1616 and GUCar: Histograms are averaged over
a regular subset of all pixels within the respective sequence. Images are rescaled w.r.t. their grey
value range for visualisation purposes. Compare with Fig. 3.22. See text for details.

updated on a per frame basis. Clearly, the larger Te is chosen, the rarer are the events
which fulfil Eq. 3.90.

According to the posterior and approximate model update, we compare grey values
from different cameras. We have to take into account that a 3-D point captured by
two cameras rarely shows the same grey value. Clearly, this is due differing camera
characteristics and signal noise. To this end, I explicitly model photometric differences
among the cameras as described next.

3.4.2 Grey Value Transfer Function

To model the different photometric characteristics of two cameras, I define the function
that maps grey values acquired by one camera onto the observed grey value in the other
camera. This function is denoted as the Grey Value Transfer Function (GVTF) φij ; it
models the characteristic curve of the mapping of grey values si produced by camera Ci
to the corresponding grey values sj acquired with camera Cj . Thus, if pixel xi in image
Ii and pixel yj in image Ij correspond to the same point in 3-D space at time t we have:

sj(yj , t) = φij(si(xi, t)). (3.91)
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If we assume a set of ideal cameras with exactly matching photometric characteristics
(including same exposure settings, 3-D points follows Lambertian reflectance model),
then the GVTF φij is simply the identity function. The GVTF will usually be unknown
and needs to be estimated in practice along learning the correspondence distribution.
In Sec. 3.6 I develop an approach to learn the GVTF.

3.4.3 Event Matching and Estimation of Correspondence
Distributions

Once a key event is triggered on the seed pixel xi, I update the posterior distribution
as described in Sec. 3.3.2. This update is based on the GVTF transformed event
signal values. If the uncertainties in the GVTF estimate are assumed to be Gaussian
distributed with mean zero and a variance σ2φ, this term may be added to the assumed
observation noise.

In the approximate model, matching is performed based on a threshold test. Specifi-
cally, I determine the set of possible correspondences Ωpc which includes all pixels in Cj
according to:

Ωpc(xi, t) = {yj ∈ Ij :

fe,t(si(xi, t− 1), si(xi, t)) > Te

∧ fm(φij(si(xi, t− 1)), sj(yj , t− 1)) < Tm (3.92)

∧ fm(φij(si(xi, t)), sj(yj , t)) < Tm}.

Here, fm is a matching or distance function of its input arguments. Observe that in
this formulation of the matching function, I implicitly test for an event in the candidate
channel. Threshold value Tm models the signal noise and allows to define a matching
envelope to account for uncertainties in the estimate of the GVTF. The accumulator
is then updated according to Eq. 3.61. For natural scenes, a reasonable choice for
the matching function could be the squared or absolute difference. However, this also
implies that the matching would fail if the polarity of the grey values among the views
is opposite and nothing is known about the true GVTF. However, different matching
functions may easily be integrated.

To summarise, I learn correspondence distributions via TCA by the repeated detection
and matching of decisive events. In the probabilistic model, I update the posterior
distribution as described in Sec. 3.3.2 whenever an event has been detected at the
seed pixel xi. The posterior distribution from the previous time step serves as a prior
distribution for the current time step. In the approximate model, I build an accumulator
array. Within each matching pass, the count of the cells indexed by the set Ωpc(xi, t) on
the accumulator is incremented based on the number of matched events M = |Ωpc(xi, t)|.
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Algorithm 1 Pixel wise Temporal Coincidence Analysis

Input a pixel xi in camera Ci and a camera Cj
Approximate model: Set the accumulator Aij to zero
Exact model: Initialise posterior
while images to be processed do
if an event occurred on pixel xi then
Approximate model: raise the count in Aij for those pixels in camera Cj which
are in the set Ωpc(xi, t)
Exact model: update posterior distribution

end if
end while

Algorithm 1 summarises the basic algorithm to estimate the correspondence distribution
via temporal coincidences.

I am now interested in monitoring the learning process by means of several attributes
of the correspondence distribution. These attributes then allow the system to have a
measure of confidence about the learnt correspondence and assess when a correspon-
dence has successfully been learnt. These self monitoring capabilities are a very im-
portant property of autonomous systems which need to be able to assess their learning
performance (Förstner 1991).

3.5 On the Analysis of Correspondence Distributions

Within the previous sections, I derived the TCA approach to learn correspondence
distributions. Recall from Sec. 3.1.1 that there are three classes of correspondence dis-
tributions I consider: i) point-to-point correspondence, ii) point-to-line correspondence
and iii) no correspondence. Which type of correspondence is learnt depends on the
scene depth structure and the scene content (cf. Sec. 3.1.1). Let a seed pixel xi and
its true corresponding pixel yj at time t be given. If only small depth variations occur,
xi ↔ yj will be valid for all time steps and the correspondence distribution will be
isotropic and point like. If large depth variations occur, the true corresponding pixel
will vary along the epipolar ray (which not necessarily needs to be a line). In this case,
the true correspondence distribution will be anisotropic with a predominant direction.
If no correspondence exists the distribution will be scattered.

I am now interested in monitoring the learning process and assess the confidence in
the correspondence estimate at every time step of the learning process. Furthermore, I
want to decide to which class the learnt correspondence belongs. All this can be accom-
plished by means of a set of attributes of the correspondence distributions as follows.
Recall the definition of a correspondence distribution from Sec. 3.3: The correspondence
distribution is given by means of a pmf fY , which describes the distribution of the ran-
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dom vector Yj = (Y1, Y2)
T
j , where Yj is considered to represent the spatial coordinates

in the j-th camera Cj . Specifically, I will regard the following set of attributes of the
correspondence distribution:

• mean vector µy,

• covariance matrix Cy,

• eigenvalues of the covariance matrix λ1, λ2,

• scalar coherence measure fc without the need for an eigenvalue decomposition of
Cy,

• coordinates of the maximum value m,

• entropy H(Y ).

Mean vector The expected correspondence coordinates under the correspondence
distribution are given as the expectation of rv. Yj :

µy =

[
µy1
µy2

]
, (3.93)

with:

µy1 = E [Y1] =
∑
y1

∑
y2

y1 · Pr[Y = (y1, y2)], (3.94)

µy2 = E [Y2] =
∑
y1

∑
y2

y2 · Pr[Y = (y1, y2)]. (3.95)

Covariance matrix The second order central moment of the correspondence distri-
bution is given as the covariance matrix according to:

Cy =

[
cy1,y1 cy1,y2
cy2y1 cy2,y2

]
, (3.96)

with:

cy1,y1 = σ2y1 = E
[
(Y1 − E [Y1])

2
]
, (3.97)

cy2,y2 = σ2y2 = E
[
(Y2 − E [Y2])

2
]
, (3.98)

cy1,y2 = σ2y1,y2 = E [(Y1 − E [Y1]) · (Y2 − E [Y2])] . (3.99)
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Eigenvalues of the covariance matrix From an eigen-decomposition of the covari-
ance matrix, we obtain eigenvectors v1,v2 and eigenvalues λ1, λ2 with:

Cyv1 = λ1v1, (3.100)

Cyv2 = λ2v2, (3.101)

with λ1 ≥ λ2. The eigenvalues can be determined in closed form as the roots of the
characteristic polynomial:

det(λI −Cy) = 0, (3.102)

according to:

λ1 =
1

2
(cy1,y1 − cy2,y2) +

√
4c2y1,y2 + (cy1,y1 − cy2,y2)2, (3.103)

λ2 =
1

2
(cy1,y1 − cy2,y2)−

√
4c2y1,y2 + (cy1,y1 − cy2,y2)2. (3.104)

The eigenvalues may be regarded as a confidence measure about the learnt correspon-
dence and the eigenvectors encode the direction of highest and lowest confidence scaled
by their associated eigenvalue. The eigenvectors define the principal axes of an uncer-
tainty or ’error ellipse’, where the extend of the ellipse is governed by the eigenvalues.

Coherence measure I adopt the so called coherence measure from (Förstner 1991;
Jähne 2012), which is a monotone and scalar valued function of the eigenvalues of
the covariance matrix. The coherence measure indicates whether the correspondence
distribution is of isotropic or anisotropic nature, with a dominant direction. It is defined
as:

fc =
λ1 − λ2
λ1 + λ2

. (3.105)

While the coherence measure is a ratio of the eigenvalues, the following derivation shows
that there is no need to explicitly solve for the eigenvalues. From the squared coherence
measure we obtain:

f2c =
(λ1 − λ2)2

(λ1 + λ2)2
, (3.106)

=
λ21 − 2λ1λ2 + λ22

(λ1 + λ2)2
, (3.107)

=
λ21 + 2λ1λ2 + λ22 − 4λ1λ2

(λ1 + λ2)2
, (3.108)

=
(λ1 + λ2)

2 − 4λ1λ2
(λ1 + λ2)2

. (3.109)
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For any square matrix its determinant is given by the product of its eigenvalues (Golub
and Loan 2012):

det{A} =
N∏
i=1

λi. (3.110)

The trace of a matrix is given by the sum of its eigenvalues (ibid.):

Tr{A} =

N∑
i=1

λi. (3.111)

From these definitions Eq. 3.109 may be rewritten as

f2c =
(Tr{Cy})2 − 4 det{Cy}

(Tr{Cy})2
, (3.112)

= 1− 4 det{Cy}
(Tr{Cy})2

, (3.113)

from which we see that no eigenvalues need to be computed explicitly. However, for 2×2
matrices, closed form solutions for the eigenvalue problem exist as shown in Eq. 3.100
and Eq. 3.101. The squared coherence measure f2c is 0 for λ1 = λ2 and indicates an
isotropic correspondence distribution. For λ1 > 0, λ2 = 0 the squared coherence mea-
sure is 1, indicating an anisotropic correspondence distribution and thus a line (=1D)
structure. For both point-to-point and no-correspondence we expect an isotropic corre-
spondence distribution. However, for the point-to-point correspondence we additionally
require that Tr{Cy} < Tλ, with a suitable chosen threshold Tλ.

Coordinates of the maximum value The spatial coordinates where the correspon-
dence distribution attains its maximum value are given according to:

m =

[
my1

my2

]
= arg maxy1,y2 Pr[Y = (y1, y2)]. (3.114)

Entropy The entropy of Y under the correspondence distribution is given as (Cover
and Joy Thomas 2009):

H(Y ) = E
[
log

1

Pr[Y ]

]
= −

∑
y1

∑
y2

Pr[Y = (y1, y2)] · logPr[Y = (y1, y2)]. (3.115)

The attributes defined above will now be used to assign the correspondence distribution
to one of the three classes defined in Sec. 3.1.1 and as a confidence measure about the
learnt correspondence. Specifically, the covariance error ellipse is used to visualise the
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3 Temporal Coincidence Analysis

confidence about a learnt correspondence, which are shown throughout the figures in
Sec. 4 and 5. The axes of the error ellipse are given by the eigenvectors of the covariance
matrix which are scaled by their eigenvalues. I usually scale the ellipses, such that the
true correspondence lies within the ellipse with a probability of 99, 7% (= 3σ). See (J.
Davis 2007) or (Hoover 1984) for details.

Next, let us discuss how these attributes are expected to behave for the three classes
of correspondence distributions considered.

Point-to-point correspondence For point-to-point correspondences, the expecta-
tion of Yj , i.e., µy marks the true corresponding pixel. This correspondence will hold
over the whole image sequence. The posterior distribution will contain a distinct peak
and both eigenvalues of the covariance matrix Cy are small. Thus the error ellipse for
the location of the corresponding pixel is concentrated around the spatial location of
the average correspondence µy and the coherence measure is close to 0. The entropy
of the correspondence distribution should be close to 0. We expect the coordinates of
the distributions maximum m as an early indicator for the true correspondence. The
coordinates of the distributions mean may be biased, i.e., they do not indicate the true
correspondence as long as the entropy is not close to zero.

Point-to-line correspondence For point-to-line correspondences, µy only repre-
sents the average correspondence location. Depending on the magnitude of the depth
variations over time, the eigenvalues λ1, λ2 of the covariance matrix Cy satisfy λ1 � λ2;
the eigenvector associated with λ1 represents the axis along which the truly correspond-
ing pixel is situated. Note that the average correspondence will not be the true corre-
spondence at any specific time step. Instead, the correspondence distribution serves as
a prior on the true correspondence. The coherence measure should be close to 1. The
entropy should be small but will depend on the actual depth range observed.

No-correspondence In the absence of a correspondence, the accumulator will in
general not be empty, but will contain a scattered distribution. In this case, the eigen-
values λ1, λ2 of the covariance matrix Cy both are of larger magnitude compared to
those encountered in point-to-point or point-to-line correspondences. The entropy of the
correspondence distribution should be rather large and the coherence measure close to
0. The mean of the distribution will lie close to the centre. The distribution’s maximum
m will be uninformative.

3.6 Learning the Grey Value Transfer Function

Recall from Sec. 3.4.2 that the GVTF models the mapping of a grey value si(xi) at
pixel xi in view Ci to its corresponding grey value sj(yj) in view Cj , observed at the true
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corresponding pixel yj . I am now interested in learning the GVTF in an autonomous
fashion based on a parametric model but without the need for manually selected corre-
spondences. The learning of correspondences and the learning of the GVTF parameters
are intertwined tasks: the learning of correspondences depends on the GVTF estimate
and the learning of the GVTF depends on estimated correspondences. In the beginning
of the learning phase, when no correspondences are available, the GVTF has to be prop-
erly initialised, as will be discussed in the following. In a general multi camera setup, we
also have to assume that the GVTF is not a static function, but that its parameters may
vary over time. It is thus necessary to continuously update the estimate of the GVTF.
The learning scheme proposed in the following can handle slow and gradual illumination
changes (such as daylight change). However, if the regarded cameras operate with auto
exposure, the GVTF may change suddenly and abruptly between frames. I will not
explicitly model these sudden changes but suggest to detect them and signal that the
GVTF transform will be invalid for the afflicted frames (cf. (Dederscheck et al. 2012)).

Note that even if the camera transfer functions are identical and under constant global
illumination, the perceived object appearance may be different across the cameras if
the object’s reflectance does not follow a Lambertian model. In the following I make
the assumption that the object’s surface reflectance follows at least approximately a
Lambertian model.

When nothing is known about the true GVTF I initialise it as the identity function and
simultaneously enlarge the assumed observation noise in the posterior update scheme.
Clearly, if we assume the GVTF to be the identity function, but that the true GVTF
is, e.g., an affine transformation of the grey values, the posterior update scheme may
fail to estimate the correspondence distribution. This is simply because the grey values
of the corresponding pixels may differ severely, which leads to small likelihoods in the
posterior update. This can only be compensated by increasing the assumed observation
noise.

3.6.1 Related Work

The sensitivity to illumination differences is an inherent problem to all appearance based
algorithms in which grey values are matched across images. As an example, the under-
lying assumption of template matching approaches is that the brightness between the
template patch and the sought correspondence (patch) is identical (brightness constancy
constraint equation, BCCE (Jähne 2012, p. 449)). Clearly, even in the absence of illu-
mination differences, the BCCE will almost never be exactly fulfilled in practice, due to
signal noise. Therefore, the difference between the template and the correspondence can-
didates is minimised, based on a suitable loss function. A common approach to reduce
the influence of illumination differences on the matching score is to compute the match-
ing score on normalised patches. For example, using the zero normalised sum of squared
differences (NSSD) (Criminisi et al. 2007) or the zero mean normalised cross correlation
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3 Temporal Coincidence Analysis

(ZNCC) (Hirschmüller and Daniel Scharstein 2009), the matching score is invariant to
affine illumination differences (multiplicative gain and additive offset model). Robust-
ness to affine illumination differences may also be achieved by regarding a collinearity
measure of the (vectorised) image patches (Mester, Aach, et al. 2001; Mester and Con-
rad 2014). Given the patches only differ by means of a gain and offset factor, they
should be collinear (given that the mean has been compensated). Note that normalisa-
tion should always be done ’with care’, otherwise unrealistic and large differences may
be compensated, still resulting in a high matching score. The homogeneous matching
measure (HMM) proposed in (Mester and Conrad 2014) constrains the gain and offset
ratios to realistic intervals. HMM is shown to be able to detect false matches, which are
(false positive) matches under the ZNSSD and ZNCC measures due to the unchecked
normalisation factors.

Robustness to illumination differences may also be achieved by transforming the input
patches into a representation in which only the relative ratios between grey values are
regarded. For example, the census transformation (Zabih and Woodfill 1994), represents
a patch as a binary valued patch. Specifically, the grey value of the i-th pixel within
the patch is set to 0 (1), given that the grey value of the centre pixel is larger (smaller).
The binary valued patch may then be regarded as a hash code or signature. In (Stein
2004), the basic census approach was extended to a ternary representation which also
codes ’similar’ grey values. The method was used to estimate sparse optical flow in an
automotive environment. See (Vogel et al. 2013) for a recent benchmark and (Hafner
et al. 2013) for a review of the mathematical concepts underlying the census approach.

Let us now turn to approaches which actually try to model illumination differences
among views instead of just compensating them. These approaches are closer related
to the one presented by me in which illumination differences are modelled by means of
an intensity transfer function.

In (Javed, Rasheed, et al. 2003), inter camera illumination differences are represented
by means of a Gaussian distribution fitted to expected colour differences. Specifically,
expected colour differences among views are computed from ground truth object cor-
respondences by measuring the so called modified Bhattacharyya coefficient between
corresponding histogram bins. The mean and variance of the determined distances are
then used to parameterise the Gaussian distribution. The training phase of the ap-
proach relies on a known set of object correspondences, which could be generated by a
single person moving through the scene. Certainly, this is a weak point of the method,
especially in large/public camera networks.

In (Javed, Shafique, et al. 2005), the estimation of the transfer function is extended,
such that a subspace of possible transfer functions is determined from ground truth
data. From given object correspondences, normalised histograms are computed and
a transfer function is determined from the inverted cumulative histogram. Then, to
all these hypothesised transfer functions PCA is applied to obtain a lower dimensional
subspace of possible transfer functions.
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In (Cheng and Piccardi 2006), illumination differences are handled based on histogram
normalisation. First, the histogram normalisation is applied to the RGB colour channels,
subsequently computing the so called major colour spectrum histogram, which only con-
tains a subset of all observed colour values of a tracked object. Object correspondences
are then identified given that the histograms distances are below a threshold.

In (Porikli 2003), a colour transfer function is computed as the minimum cost path
within the correlation matrix of 1-D histograms of given image pairs from different
cameras.

In (Dederscheck et al. 2012) the relative intensity transfer function (RITF) between
consecutive frames of a video stream is estimated. For two images given at time t − 1
and t, first, the images are subdivided into small patches. Then, all patches showing
apparent motion within the regarded time steps are discarded. A patch centred at
location (x, y) in the image at time t− 1 and the patch at the same spatial location in
the image at time t are now assumed to be (approx.) identical except for an illumination
difference. Next, from the mean grey values of corresponding patches a joint histogram
is build. The RITF is then obtained as a constrained least squares fit to the (filtered)
joint histogram. Based on a quality measure of the fit, the method is able to detect
adverse illumination differences which cannot be compensated. Experimental results
suggest that the proposed method allows to improve the results of a dense optical flow
algorithm.

Related to the problem of modelling intensity differences in grey scale images is the
problem of achieving colour constancy among different colour images. However, as I
only regard grey scale images, I refer to (Hordley 2006) for an overview.

There is also interesting work in modelling the intensity mappings between images of
the same camera, which allows to estimate the camera response function and which I
mention here for completeness. Grossberg and Nayar (Grossberg and Nayar 2003, 2002)
estimate the camera response function, i.e., the mapping from scene radiance to image
intensity values. They show how the camera response function can be inferred from
brightness transfer functions, estimated from joint histograms of grey values in pairs of
images. While this finding is not completely new, they derive several ambiguities of the
estimation process and show that an unambiguous recovery of the response function is
only possible when assumptions on the response function are made. In previous work
(e.g., (S. Mann 2000; Mitsunaga and Nayar 1999), these assumptions were made only
implicitly, like smoothness of the response function etc.
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3.6.2 GVTF Model

Let me now formally introduce my GVTF model. I model the GVTF by an N -th order
polynomial:

φij(si(xi);θ) =
N∑
p=0

θpsi(xi)
p, (3.116)

where θ = {θ0, .., θN} are the parameters to be estimated. While the order of the
polynomial is in general unknown as well, typical camera transfer functions are monotone
functions and may be modelled by a low order polynomial.

If a set of pixel to pixel correspondences is available, from which we obtain P pairs
of colour values {si(xi), sj(yj)}P , the estimation of the GVTF boils down to a model
selection (order of the polynomial) and regression problem (fitting the polynomial). In
the literature, the set of grey value pairs used to estimate the photometric mapping is
also denoted as comparagram (S. Mann and R. Mann 2001).

We have to take into account that the observed grey value pairs are only noisy mea-
surements of the true grey values. The non-trivial task in the GVTF estimation process
is thus the extraction of corresponding grey value pairs in the presence of geometric and
photometric errors. This task becomes even more difficult when the correspondence
type is not essentially point-to-point like. For the moment being, I assume that grey
values are only extracted for point-to-point correspondences.

3.6.3 Observation Model

I regard a pixel correspondence xi ↔ yj and the associated grey values si(xi, t) and
sj(yj , t) at time t. Let x̂i, ŷj , ŝi(x̂i, t) and ŝj(ŷj , t) denote the respective observations.
In my observation model, the pixel coordinates may contain a geometric error. The
respective grey value signal may contain a geometric and a photometric error. The
geometric error is due to inaccuracies in the estimate of the correspondence, while the
photometric error is due to camera noise.

The observation model for the seed pixel xi and its grey value si(xi, t) is given by:

x̂i = xi, (3.117)

ŝi(x̂i, t) = si(xi, t) + ephoto. (3.118)

The observation model reflects that the seed pixel does not contain a geometric error
(Eq. 3.117), as it is (automatically) selected prior learning any correspondence. However,
the observed grey value will contain a photometric error ephoto (Eq. 3.118).

The observation model for yj and sj(yj , t) is given by:

ŷj = yj + espatial, (3.119)

ŝj(ŷj) = sj(ŷj , t) + ephoto, (3.120)
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with espatial = (eu, ev)
T representing the spatial error by a shift in x and y direction.

Besides the camera noise, the observed grey value now depends on the spatial error of
the correspondence estimate as well. Note that the spatial error is vector valued, while
the photometric error is a scalar value.

3.6.4 Filling the Comparagram

The simplest strategy to generate observation pairs {ŝi(xi), ŝj(ŷj)}P is to read off the
signal values at the given spatial locations (seed pixel and its correspondence) for many
frames2. However, this strategy may induce severe outliers. Even if the spatial error
term is rather small (less than a few pixels) the induced photometric error could be orders
of magnitude larger. To see this, regard Fig. 3.24 (left) where two views of a synthetic
scene are shown. Assume that for the seed pixel in the left view, its corresponding
pixel in the right view contains a spatial error of one pixel, the smallest achievable error
disregarding sub-pixel accuracy. At the regarded time step, the seed pixel is covered by
the white square, thus its signal value will be close to the maximum grey value. However,
the signal value at the correspondence estimate lies within the dark background and its
grey value will be close to the minimum grey value. Adding this grey value pair to the
comparagram would obviously generate a severe outlier. Next, regard Fig. 3.24 (right).
While the spatial error is still present, the photometric error is in the signal noise range
(assuming we regard GVTF transformed grey values), as the seed pixel, as well as its
correspondence estimate lie within a homogeneous area and not at an edge as before.

The example motivates that a signal pair should only be added to the comparagram,
given that the spatial error is small and the local area around the regarded pixel is
essentially homogeneous, i.e., does not contain high frequency components. From a
statistical point of view, the (local) autocorrelation function of the regarded pixel should
have low curvature, i.e., the signal around the regarded pixel should vary slowly.

I am now interested in determining those correspondences for which the difference
between the GVTF transformed grey values is minimum. Obviously, the best that can
be achieved is when the magnitude of the spatial error is zero and the photometric error
is within the assumed signal noise level. However, the spatial error will rarely be zero
in practice and my goal is to identify those signal pairs for which a spatial error in the
correspondence estimate leads to a small photometric error.

To this end, I regard how the image signal in the vicinity of the correspondence
estimate varies for small shifts d = (dx, dy)

T in x and y direction, respectively. Specifi-
cally, I regard the squared difference of the image signal at the correspondence estimate

2 Throughout the following, I may refer to this type of approach as the näıve scheme.
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Figure 3.24: Photometric error due to spatial error: Visualisation of how a small geometric
error may induce a large photometric error, depending on local signal structure (left) in the vicinity
of structured/textured regions and (right) in homogenous areas. See text for details.

and its shifted counterpart within a small window around the correspondence estimate
according to:

Q(d)
def.
=
∑
k

w(ŷj;k)(ŝj(ŷj;k + d)− ŝj(ŷj;k))2. (3.121)

Note that the summation
∑

k is over a rectangular subset (=patch) of pixels indexed by
ŷj;k where the patch is centred on ŷj . The term w(ŷj;k) is an additional weight factor
which allows to have pixels close to the centre of the window more importance than
those at the border (cf. (Szeliski 2010)).

Intuitively, we should only add those signal pairs to the comparagram, for which Eq.
3.121 is small despite a shift by d. In this case, the influence of the spatial error on the
photometric error is assumed to be negligible as the correspondence then lies within a
homogeneous area, as has been illustrated in Fig. 3.24.

For the following analysis, I assume that the correspondence estimate is sufficiently
close to the true correspondence, but that it may contain a spatial error.

I approximate the spatial error dependent term in Eq. 3.121 by a Taylor expansion
according to:

ŝj(ŷj + d) = ŝj(ŷj) +
∂ŝj
∂x

∣∣∣∣
ŷj

· dx +
∂ŝj
∂y

∣∣∣∣
ŷj

· dy +O(d2x, d
2
y), (3.122)

≈ ŝj(ŷj) +
∂ŝj
∂x

∣∣∣∣
ŷj

· dx +
∂ŝj
∂y

∣∣∣∣
ŷj

· dy, (3.123)

where O(d2x, d
2
y) denotes the order of the approximation error.
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Plugging Eq. 3.123 in Eq. 3.121 we obtain:

Q(d) =
∑
k

w(ŷj;k) [ŝj(ŷj;k + d)− ŝj(ŷj;k)]2 , (3.124)

≈
∑
k

w(ŷj;k)

[
ŝj(ŷj;k) +

∂ŝj
∂x

∣∣∣∣
ŷj;k

· dx +
∂ŝj
∂y

∣∣∣∣
ŷj;k

· dy − ŝj(ŷj;k)

]2
, (3.125)

=
∑
k

w(ŷj;k)

[
∂ŝj
∂x

∣∣∣∣
ŷj;k

· dx +
∂ŝj
∂y

∣∣∣∣
ŷj;k

· dy

]2
, (3.126)

=
∑
k

w(ŷj;k)

(∂ŝj
∂x

∣∣∣∣
ŷj;k

)2

· d2x + 2

(
∂ŝj
∂x

∂ŝk
∂y

) ∣∣∣∣
ŷj;k

· dx · dy +

(
∂ŝj;k
∂y

∣∣∣∣
ŷj;k

)2

· d2y

 .
(3.127)

Rearranging Eq. 3.127 we obtain:

Q(d = (dx, dy)
T ) =

[
dx dy

]∑
k

w(ŷj;k)


(
∂ŝj
∂x

∣∣∣∣
ŷj;k

)2 (
∂ŝj
∂x

∂ŝj
∂y

) ∣∣∣∣
ŷj;k(

∂ŝj
∂x

∂ŝj
∂y

) ∣∣∣∣
ŷj;k

(
∂ŝj
∂y

∣∣∣∣
ŷj;k

)2


[
dx
dy

]
,

(3.128)

= dTA[ŷj ]d. (3.129)

We may rewrite A in a more concise form as follows. Let Ix and Iy denote the spatial
image derivatives of sj in x and y direction, respectively. Then we have:

A[ŷj ] =

[ ∑
k w(ŷj;k)I

2
x

∑
k w(ŷj;k)IxIy∑

k w(ŷj;k)IyIx
∑

k w(ŷj;k)I
2
y

]
. (3.130)

The summation and weighting over a local neighbourhood is usually implemented via
convolution with a suitable low-pass filter G:

A[ŷj ] =

[
G ∗ I2x G ∗ IxIy
G ∗ IyIx G ∗ I2y

]
. (3.131)

The quadratic form in Eq. 3.129 is governed by matrix A, which is known as the
structure tensor (Jähne 2012). The structure tensor is well known in computer vision
and appears, e.g., in classic approaches to motion estimation, keypoint detection and
tracking (Harris and Stephens 1988; Lucas and Kanade 1981; Shi and Tomasi 1994). It
can be shown that the structure tensor approximates the Hessian of the signal’s auto-
correlation function (Förstner 1991). Hence, the structure tensor may be determined
without the need to determine spatial image derivatives (Mester 2000).
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The structure tensor summarises and describes the local structure around pixel ŷj . The
structure tensor is a symmetric matrix and thus its eigenvectors form an orthogonal
basis (Golub and Loan 2012). Let λ1 and λ2 be the eigenvalues of the structure tensor
with λ1 ≥ λ2. The eigenvalues are a measure of the signal’s variance along its major
axes (Bigun 2006) and allow to classify the local structure according to:

λ1 ≈ λ2 ≈ 0↔ no structure, homogeneous region, (3.132)

λ1 � 0, λ2 ≈ 0↔ 1d structure, line like, (3.133)

λ1 ≈ λ2 � 0↔ 2d structure, corner like. (3.134)

See Sec. 3.5 for details on the (closed form) computation of the structure tensor’s
eigenvalues.

In keypoint detection, one is interested in identifying distinct or unique pixels in an
image. Intuitively, these are points with a distinct local structure where small shifts of
the signal in any spatial direction results in large values of Eq. 3.121. Hence, keypoints
are those for which both eigenvalues of the structure tensor are large. Pixels for which
the second eigenvalue of the structure tensor is close to zero may be considered as line
points for which only signal changes orthogonal to the 1-D structure can be detected
(aperture problem).

Let us return to the task of filling the comparagram. As our goal is to minimise the
influence of the spatial error in the correspondence estimate, we should only regard grey
values of pixel pairs where the eigenvalues of the associated structure tensors are both
close to zero, respectively. Then, the pixels lie within a homogenous region.

Now let λ1,i and λ2,i with λ1,i ≥ λ2,i be the eigenvalues of the structure tensor
associated with seed pixel xi, and let λ1,j and λ2,j with λ1,j ≥ λ2,j be the eigenvalues of
the structure tensor associated with the correspondence estimate ŷj . I then define the
decision rule when to add a signal pair to the comparagram according to:

{
λ1,i ≤ Tφ and λ1,j ≤ Tφ, add {ŝi(xi), ŝj(ŷj)} to comparagram,

else, reject.
(3.135)

Besides this proposed method for filling the comparagram I will compare the approach
with the näıve scheme in Sec. 3.6.6, in which the comparagram is filled while disregard-
ing the spatial error in the correspondence estimate.

3.6.5 Estimating the GVTF

I am now interested in estimating the GVTF, based on a given comparagram. To this
end, I develop a statistical model, in which with each grey value in view Ci, a distribution
over the grey values in view Cj is associated. This allows to represent and quantify the
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uncertainties involved in the grey value mapping, which are due to signal noise and
errors in the correspondence estimate as described earlier.

Let G = {0, .., 255} be the discrete set of observable grey values in view Ci and view
Cj . Let gi ∈ G be a grey value observed in view Ci. The GVTF maps gi to a grey value
gj = φij(gi) in view Cj . I regard the GVTF as a distribution over the (2-D) space of
grey value pairs {(gi, gj) ∈ G ×G}. For a grey value gi in view Ci, I regard its first order
and second order central moment of the GVTF transformed grey value, which are given
as:

E [φij(gi)] = µφij(gi), (3.136)

and

E
[
(φij(gi)− µφij(gi))

2
]

= σ2φij(gi). (3.137)

If we assume the signal noise to be Gaussian distributed, the distribution of grey value
gi over the grey values in view Cj is given as:

φij(gi) ∼ N (µφij(gi), σ
2
φij(gi)

). (3.138)

Learning the GVTF then amounts to determine empirical estimates of first and second
order moments for all k = |G| observable grey values.

We may estimate the moments based on the data available in the comparagram. Let
1{X = Y} denote the indicator function which evaluates to 1, given that the argument is
true. Then, for grey value gi, the empirical mean of its GVTF transformed counterpart
is given by:

µ̂φij(gi) =
1

N

P∑
p=1

ŝj(ŷj;p) · 1{ŝi(xi;p) = gi}, (3.139)

with N =
∑P

p 1{ŝi(xi;p) = gi}.
The empirical variance is given by:

σ̂2φij(gi) =
1

N − 1

P∑
p=1

(ŝj(ŷj;p)− µ̂φij(gi))
2
1{ŝi(xi;p) = gi}. (3.140)

If the true signal noise is assumed to be i.i.d., then the empirical variances σ̂2φij(gi) should

be identical and are itself an estimate of the signal noise variance in view Cj .
Observe that the signal values of the seed pixel itself contain noise in the range of

the assumed signal noise of view Ci, but that this is not explicitly represented in the
equations for the empirical means and variances in Eq. 3.139 and Eq. 3.140, i.e., I
here utilise an unsymmetrical error model. Clearly, we may formulate the model as a
symmetric error model (as a TLS problem), however, this is considered future work.
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3 Temporal Coincidence Analysis

3.6.5.1 Online Update Scheme

In order to learn and update the GVTF online, we have to update the set of statistical
moments. To this end, we do not need to store an ever growing comparagram. Instead,
we only have to update a set of sufficient statistics per grey value gi. The formulae for
the empirical mean and variance only depend on the following quantities:

Ngi =

P∑
p

1{ŝi(xi;p) = gi}, (3.141)

Sgi =
P∑
p

ŝj(ŷj;p) · 1{ŝi(xi;p) = gi}, (3.142)

Qgi =
P∑
p

ŝj(ŷj;p)
2 · 1{ŝi(xi;p) = gi}. (3.143)

From Ngi , Sgi , Qgi , the empirical mean and variance are given as:

µ̂φij(gi) =
Si
Ni
, (3.144)

σ̂2φij(gi) =
Qi
Ni
−
(
Si
Ni

)2

. (3.145)

For the Gaussian noise model, we may then directly plug in these values of mean and
variance.

3.6.5.2 Deriving a Functional Form

Let us now return to the problem of deriving a functional representation of the GVTF,
by means of a polynomial of order N . Given the order of the polynomial, the task is
to estimate the parameter vector θ = {θ0, .., θN}. To this end, I may make use of the
previously introduced probabilistic model of the GVTF as follows. I regard a grey value
gi and the empirical mean of its GVTF transformed grey value µ̂φij(gi) as a data point, to
which I fit the parameter vector of the functional GVTF model in a least squares sense.
Additionally, I may use the (inverse) empirical variances σ̂2φij(gi) as weight factors, giving

a data point with small variance a larger influence on the parameters to be estimated.
Under this model one may then enforce a monotone GVTF with additional constraints
if desired.

Let z be the measurement vector with:

z =

 µ̂φij(gi=0)
...

µ̂φij(gi=255)

 , (3.146)
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3.6 Learning the Grey Value Transfer Function

and let H be the coefficient or observation matrix:

H =

 (gi = 0)0 (gi = 0)1 . . . (gi = 0)N

...
...

...
...

(gi = 255)0 (gi = 255)1 . . . (gi = 255)N

 . (3.147)

Furthermore, let v be the observation noise vector. The linear observation model is then
defined as:

z = Hθ + v, (3.148)

where θ is the sought parameter vector defined as:

θ =

 θ0
...
θN

 . (3.149)

Equation 3.148 represents the standard linear model. Minimising the squared difference
between the observations and their approximation leads to the normal equation (Kay
1993):

θ̂ = (HTH)−1HTz. (3.150)

Additionally, we may make use of the empirical variances as follows. Let W be the
weight matrix defined as:

W = diag(σ̂2φij(gi=0), σ̂
2
φij(gi=1), . . . σ̂

2
φij(gi=255))

−1. (3.151)

Then, the weighted least squares estimator of the sought parameter vector (respecting
the uncertainties in the data points) is given by (ibid.):

θ̂ = (HTWH)−1HTWz. (3.152)

Note that the sought parameter vector may be estimated via a total least squares fit,
as the regarded grey values in Ci and Cj are afflicted with noise. However, this remains
future work.

3.6.5.3 Incorporating the GVTF

Recall from Sec. 3.4.3 that the temporal update of the posterior distribution (and its
approximate counterpart) is performed on GVTF transformed signal values. Therefore,
I transform the seed pixel’s grey value via φij prior the update step. Recall that the
GVTF will induce additional uncertainties in the matching process which are at best
on par with the signal noise variance, as the GVTF estimate itself is noisy. Recall that
the noise variance for the seed pixel channel (cf. 3.3.4) is given by σ2g|s. Assuming that
the signal and GVTF noise are independent of each other, I then replace this term by
σ2g|s + σ2φij .
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Figure 3.25: GVTF measuring points and initialisation: (left) Sample frame of view Ci of se-
quence GUCar where measurement points are marked by a red circle, (right) Initialised GVTF in blue
and its initial uncertainty area in grey. Ground truth GVTF plotted in red. See text for details.
Figure only interpretable when viewed in colour.

3.6.6 Simulation

Let me now simulate the proposed GVTF learning scheme on a pseudo stereo setup.
To this end, I regard the left view of sequence GUCar as camera C1 and generate a
second view C2 as the same left view from GUCar. I then select 240 correspondences
{xi ↔ yj}240 laid out in a regular grid.

Obviously, the true correspondences in the second view are identical to the seed pixel
coordinates. I now induce a geometric error on the correspondences. Specifically, I
independently add zero mean Gaussian noise to each of the correspondence coordinates
and to each of its x and y coordinates according to:

ŷj = yj + espatial, (3.153)

with

espatial ∼ N (0, σ2espatial · I), (3.154)

where I denotes the 2× 2 identity matrix. In the following, I will only regard the noise
afflicted set of correspondences {xi ↔ ŷj}240.

I vary the spatial noise standard deviation within σespatial = [1, 2, 3, 4, 5] and vary
the comparagram threshold from Eq. 3.135 within Tφ = [1, 2, 4, 6, 8, 10]. Hence, for
a given noise std., the average spatial endpoint error (in pixels) is given by E [EP ] =√
σ2espatial + σ2espatial . I define a GVTF as a 3rd order polynomial with parameter vector

θ = {θ0 = 0, θ1 = 1.53, θ2 = −6.2e− 3, θ2 = −1.64e− 5}. Note that the actual choice of
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3.6 Learning the Grey Value Transfer Function

the GVTF is not relevant in this simulation, as the correspondences are already given.
For the moment being, I will not add additional noise to the images, as I focus on the
influence of the geometric error on the GVTF estimate.

Figure 3.25 visualises the chosen seed pixels for a sample frame of sequence GUCar.
Furthermore, the figure shows the ground truth GVTF according to the given parame-
ters as well as its initialisation. I initialise the GVTF estimate as the identity function.
The initial variances σ̂2φij(gi) have to be large enough, such that the true but unknown

GVTF is encapsulated. However, this is only needed in practice, when the GVTF is
used during correspondence learning and when nothing is known about the true GVTF.
Then we have have to accept large (GVTF transformed) grey value differences. Only
over time, these variances will decrease the more we learn about the true GVTF. In the
simulation I set the initial variances to a fixed value of

√
202 which results in an uncer-

tainty area of width ±20 grey values as shown in Fig. 3.25 (right). In order to initialise
the GVTF to the identity I set the parameters according to N(gi=k) = 1, S(gi=k) = k,
Q(gi=k) = σ̂2φij(gi) + S2

(gi=k)
.

Next, for each parameter setting, I build a comparagram over the first 2,500 frames
of sequence GUCar, by means of updating variables Ngi , Sgi , Qgi . This is done for the
näıve update scheme and the proposed update scheme, based on the eigenvalues of the
structure tensors (cf. Eq. 3.135).

Figure 3.26 visualises estimated parameters µ̂φij(gi) and σ̂2φij(gi) by means of a grey

error bar centred on the mean with a width of one standard deviation. The figure shows
plots for σespatial = 2, σespatial = 4 and thresholds Tφ = [2, 4, 8]. Recall that the mean
and variance are given according to Eq. 3.144 and Eq. 3.145.

For σespatial = 2 and Tφ = 2, it can be seen that the initial uncertainty for grey
values up to 150 considerably decreased and encapsulates the true GVTF. For grey
values above 150, the uncertainty is still large but still encapsulates the true GVTF.
For Tφ = 4 and Tφ = 8 it can be seen that the uncertainty decreases over the whole
grey value range. Clearly, the larger Tφ is set, the more grey value pairs will be added
to the comparagram. However, the larger the threshold is set, the more will the local
area around the seed pixel and its correspondence deviate from a homogenous area.
Depending on the geometric error, outliers may be added to the comparagram. This
can be seen in Figure 3.26 for σespatial = 4. While the mean values µ̂φij(gi) seem to
be close to the true GVTF, we see that the associated uncertainties are for some of
the grey values larger than the initial value. This effect reduces for Tφ = 8, as more
measurements are added to the comparagram.
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Figure 3.26: Learning the GVTF via the proposed method: For different average spatial errors,
and different threshold levels. Estimates of µ̂φij(gi) and σ̂2

φij(gi)
define the grey uncertainty area.

Ground truth GVTF in red. See text for details. Figure only interpretable when viewed in colour.
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3.7 TCA on the Pyramid / In Scale Space

Figure 3.27 compares the proposed and the näıve update scheme. We see that an
average spatial error of only 1 pixel induces severe errors in the näıve GVTF estimate.
As expected, this becomes even worse when the average spatial error increases.

Next, I determine a functional form of the GVTF, both via a standard (non-weighted)
and a weighted least squares fit to µ̂φij(gi) (with weights (σ̂2φij(gi))

−1) as described in Sec.

3.6.5.2. I assume that the order of the GVTF is known (=3). Figure 3.28 visualises the
estimated GVTFs, both for the proposed and the näıve learning scheme after 500, 1, 500
and 2, 500 frames have been processed. The spatial error was set to σespatial = 4 and
the threshold to Tφ = 10. In Fig. 3.28 (bottom) I show the average squared residuals
between the true GVTF and its estimate. It can be seen that the proposed approach
outperforms the näıve method. Overall, the GVTF estimates for the proposed method
are less sensitive to the induced spatial error. When comparing the average squared
residuals of the weighted and non-weighted fit, we see that the weighted fit improves
the GVTF estimate, especially in the early learning phase. Furthermore, using the
variance estimates as weighting factors further improves the GVTF estimate. Compare
the residuals of the proposed and the näıve scheme; the residuals for the näıve scheme
are above 150, while they are close to zero for the proposed scheme and 2,500 processed
frames.

To summarise, the simulation has shown the principle applicability of the proposed
GVTF learning scheme. In practice, the GVTF estimation will of course be more
challenging, as reliable correspondences have to be learnt first.

3.7 TCA on the Pyramid / In Scale Space

So far, I made the implicit assumption that TCA is applied to the full scale images as
given by a binocular camera setup. Let the spatial domain of Ci be of size M × N .
Without loss of generality, assume that the spatial domain of Cj is of the same size.
For a given seed pixel xi in Ci, TCA estimates its correspondence distribution over all
M · N candidate pixel locations in Cj . While we may summarise the correspondence
distribution with a few attributes (cf. Sec. 3.5), this can only be done once a reliable
estimate of the true correspondence distribution has been learnt. The amount of memory
needed by TCA thus linearly scales with the number of active seed pixels.

Clearly, we may decrease the amount of memory needed, if we could limit the search
space for the sought correspondence in Cj . To this end, we may apply TCA in a coarse
to fine manner based on a spatial pyramid of the input images. The coarse to fine
approach also allows to implement an energy/memory constraint which could be given
by the overall system limits in which TCA is applied. This is also in line with a biological
view on vision, where learning is believed to operate in a coarse to fine manner (Marr
1982).
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3 Temporal Coincidence Analysis

I build on the common Gaussian pyramid (Burt and Adelson 1983). For a given image
It,i from Ci at time t, its pyramidal representation is given as follows. The input image
represents the base level of the pyramid:

G0 = It,i. (3.155)

The (i + 1) pyramid level Gi+1 is a low pass filtered and subsequently down sampled
version of level Gi. Typically, subsampling is performed by a factor of 2 in each dimension
(see for example (Jähne 2012, p. 483) or (Szeliski 2010, p. 144) for details).

Returning to the application of TCA, the number of correspondence candidates |H|
on the i-th pyramid level is given by:

|H| = N ·M ·
(

1

4

)i
. (3.156)

The idea is now to learn a correspondence distribution via TCA on a coarse scale and
using the learnt correspondence distribution to constrain the search space (=correspon-
dence candidates) on a finer level (not necessarily the base level).

Recall that the correspondence distribution’s covariance matrix encodes the confi-
dence about the learnt correspondence. The level of confidence about the correspon-
dence distribution is encoded by the eigenvalues λ1 and λ2 of the covariance matrix and
the direction by the respective eigenvectors (cf. Sec. 3.5). For reasons of computational
ease, I may constrain the search space on level i−1 to a square and axis aligned window
of dimensions λ1 · 2i × λ1 · 2i, instead of using an elliptical representation as is given by
the eigenvalues and eigenvectors. The window is then centred on the coordinates of the
empirical mean of the correspondence distribution. Further details and experimental
results will be given in Sec. 4.
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Figure 3.27: Proposed vs näıve learning scheme: For different average spatial errors, and different
threshold levels. Estimates of µ̂φij(gi) and σ̂2

φij(gi)
define the grey uncertainty area. Ground truth

GVTF in red. See text for details. Figure only interpretable when viewed in colour.
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Figure 3.28: Functional GVTF fitting: for σespatial
= 4 and Tφ = 10. Weighted and non weighted

least squares fit to µ̂φij(gi) with weights (σ̂2
φij(gi)

)−1 after 500, 1,500 and 2,500 processed frames

are shown. (bottom) Average residuals of the weighted and non-weighted least squares fit. Error
bars span 2 times the standard deviation of the squared residuals. See text for details. Figure only
interpretable when viewed in colour.
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3.8 Summary and Conclusion

3.8 Summary and Conclusion

I introduced the Temporal Coincidence Analysis (TCA) approach to learn pixel corre-
spondences between pairs of views. I derived TCA as a statistical model and showed
that the basic principle of detecting and matching temporal events in the grey value
signal can be cast as a temporal update scheme of an associated posterior distribution.
Correspondences are then represented by a correspondence distribution over the spatial
coordinates of the view in which the correspondence is to be learnt. The progress of the
learning scheme can be monitored by means of attributes of the correspondence distri-
bution. An important property of TCA is that the uncertainty about a correspondence
estimate is explicitly given by means of the second order statistics of the correspondence
distribution. This allows to propagate uncertainties to higher level processes which op-
erate on the learnt correspondences, e.g., in the estimation of the fundamental matrix
(Brooks et al. 2001; Haralick 2000).

I introduced the Grey Value Transfer Function (GVTF), which models the transfer
function of grey values in different cameras. The GVTF can be learnt from a set of
(learnt) correspondences by fitting a low order polynomial to a comparagram, i.e., a
2-D histogram of corresponding grey values recorded from corresponding pixels. The
learning scheme is robust to spatial uncertainties in the correspondence estimates as
the local spatial image signal is explicitly regarded. Grey value pairs are only added
to the comparagram given that the local signal structure around the regarded pixels is
homogeneous.

Simulations of TCA and the GVTF learning scheme have shown that correspondences
and transfer functions between pairs of cameras can be learnt by only regarding the
temporal signal of single pixels without the need for solving the correspondence problem
by means of computing correspondences explicitly.
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4 Learning Stereo Correspondences

4.1 Introduction

In the following, I present an evaluation of TCA when applied to binocular (stereo)
camera setups. In the first part, the method is analysed based on an artificial binoc-
ular setup, where the spatial and photometric transformations between the views can
be controlled and are thus known. While the type of correspondence being learnt is
restricted to the point-to-point case as explained in the following, the setup allows an
evaluation based on ground truth data.

In the second part of the evaluation, results for real world multi-camera setups are
presented. This includes real world setups in which the camera views are rotated or
perspectively distorted with respect to each other or in which cameras are equipped
with different optics and in which cameras are stationary or moving.

4.2 Evaluation

Throughout the evaluation, I assume the cameras to be synchronised and that their
relative orientation is fixed over the learning phase. Clearly, the cameras need to have
overlapping fields of view, otherwise no spatial correspondences would exist which could
be learnt.

4.2.1 Evaluation on Synthetic Data

In the following, I present results obtained on synthetic multi-view data, for which
ground truth correspondences are available. Similar to the setup for the GVTF simu-
lation (cf. Sec. 3.6.6), I simulate a binocular camera setup based on a single view. To
this end, I regard the monocular sequence Forrest as given by camera C1. The second
view C2 is then given as the first view, which may additionally be transformed by an
affine spatial transformation A. Within this setup, for each seed pixel xi in the first
view the true corresponding pixel yj in the second view is given by:[

yj
1

]
= A

[
xi
1

]
. (4.1)

For the results presented in the following, I set A to the identity transformation, merely
for visualisation purposes and to ease the understanding of the figures. However, note
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4 Learning Stereo Correspondences

Figure 4.1: Test setup: Left and right view of the synthetic binocular camera setup. (left) Sample
frame of the left view, here given by sequence Forrest. Seed pixels are laid out in a regular grid
and are marked by blue dots. (right) Corresponding right view in which correspondences are to be
learnt. Initially, the uncertainty about the true correspondence is maximum and will decrease during
learning. See text for details. Best viewed in colour.

that TCA is invariant to (in-plane) rotations and translations of the input views as only
single pixels are regarded. Therefore, the presented results are transferable for scenarios
in which the camera views are rotated and translated w.r.t. each other. Within the
evaluation based on real world data, we will see that TCA is also robust to more general
perspective transformations of the input data.

Throughout the following experiments, for each frame pair I1,t and I2,t at time t, I
add i.i.d. zero mean Gaussian noise independently to every pixel. Note that in this
setup, only point-to-point correspondences are to be expected, as the scene depth is
constant.

Results presented in the following basically resemble those of the model simulations
performed in Sec. 3.3.5 and Sec. 3.6.6. Therefore, I only present several prototypical
results for the synthetic setup and introduce the visualisation scheme used throughout
the experiments on real world data.

The setup of the evaluation is as follows. I select 54 seed pixels in C1, laid out in
a regular grid as shown in Fig. 4.1. I learn correspondences by means of learning
correspondence distributions as described in Sec. 3.4. Recall that the model depends
on the parameters:

• σs, modelling the standard deviation of the source signal,

• σh|s and σg|s, modelling the model uncertainties, i.e., signal noise, uncertainties in
the GVTF estimate etc..
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Additionally, we may set parameter Te (=event threshold) to skip model updates which
are likely to provide only little information on the true correspondence. As has been
discussed previously, events which are very likely to occur will tell us little about the true
correspondence, simply because it is very likely that there are too many correspondence
candidates (cf. Sec 3.3.4).

4.2.2 Selecting Model Parameters

I determine a suitable value for σs by measuring the standard deviation of the event
signal value over a representative subset of the frames to be processed. Clearly, in
a dynamic scene the std. of the event signal value is likely to change over time and
might have to be updated continuously. However, this is considered future work and
the presented experiments are based on a fixed value of σs.

Parameter σh|s depends on the signal noise and illumination differences among the
views. In principle, this parameter allows to define a matching envelope which is narrow
when the noise level is small and which is wide otherwise. Let the std. of the grey value
signal noise be σC and let κ be a constant value. I then set:

σh|s = (2 · κ · σC)2 (4.2)

where I typically set κ = 4. The idea of choosing σh|s in this way is as follows. Under
the Gaussian signal noise model, for a given noise standard deviation σC , we have that
99, 99% of the values will lie within the interval ±4·σC (assuming zero mean). According
to the definition of the event function (cf. Eq. 3.89), this may result in an event value of
fe(κ ·σC ,−κ ·σC) = (2 ·κ ·σC)2. Similarly, uncertainties due to an unknown GVTF enter
σh|s as an additive term, assuming that signal noise and uncertainties of the GVTF
estimate are uncorrelated (cf. Sec. 3.6.5.3).

The influence of parameter σh|s on the learning performance is as follows. The larger
we set σh|s, the more events will be matched as the matching envelope becomes wider.
Therefore, we expect that we have to process more frames/events until a specified level
of confidence about the learnt correspondence is attained. On the other hand, if σh|s
underestimates the true model uncertainty it is likely to match more non-corresponding
channels. Clearly, matching of non-corresponding channels may result in a wrong esti-
mate of the true correspondence distribution. I have found that parameter σh|s is rather
uncritical as long as it is not underestimating its true (but hidden) value.

In the following experiments, I chose a signal noise level of σC = 2 and an identity
GVTF. I estimated the source event signal std. with σs = 1, 400 and set σh|s = σg|s =
(2·κ·σC)2 = 256. I perform three runs of TCA on 600 frames of sequence Forrest where
I vary the event threshold in Te ∈ [64, 128, 256]. After each model update, I update the
correspondence distribution’s attribute set described in Sec. 3.5.

Figure 4.2 visualises the learnt correspondence distributions after 30, 450 and 590
frames have been processed. Each correspondence distribution is visualised by a red
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dot, indicating the average correspondence location µyi . Additionally, the uncertainty
about the learnt correspondence is visualised by means of the distribution’s covariance
error ellipse, here shown in green.

From the figures corresponding to 30 processed frames, it can be seen that the uncer-
tainty about the learnt correspondence is high as indicated by the large error ellipses.
The correspondence estimates seem to cluster in the middle of the right view. This is to
be expected, as the correspondence distributions are initialised as a uniform distribution.
Hence, the expected correspondence location initially lies in the middle of the image.
The more frames are processed, we see that the uncertainty about the correspondence
decreases. After 450 processed frames, the uncertainty significantly decreased for most
of the seed pixels. After 590 processed frames, the true correspondence has successfully
been learnt for each of the seed pixels.
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Figure 4.2: Exemplary results for sequence Forrest: Learning correspondences from a one view
setup at frame 30, 450 and 590. For a set of seed pixels in the left view (blue marks), correspondences
learnt in the right view are shown (red marks). Green covariance error ellipses per seed pixel visualise
the certainty about the estimated correspondence. Best viewed in colour and up scaled. See text for
details.
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4 Learning Stereo Correspondences

Let us now regard other attributes of the correspondence distributions. Figure 4.3
visualises plots of the entropy, the endpoint error and the coherence measure aver-
aged over the 54 correspondence distributions. Additionally, I determine the energy
consumption ξ = M

|H| per processed frame, which is defined as the ratio of processed

(detected) events M to the total number of seed pixels. It follows that 0 ≤ ξ ≤ 1.
We may influence the average energy consumption by means of the event threshold Te.
Clearly, the larger the event threshold is chosen, the less events will be processed. The
aforementioned measures are shown in Fig. 4.3 for the three different event thresholds
Te ∈ [64, 128, 256]. Let us now regard the plots of the average entropy E [H(Yj)] (top
row in Fig. 4.3). Recall that the correspondence distribution’s entropy upon initialisa-
tion is given by Eq. 3.69. As the images have a resolution of 720× 540 pixels, we have
E [H(Yj)]t=0 = log2(720 · 540) = 18.56, at time t = 0. It can be seen, that the corre-
spondence distribution’s entropy decreases the more frames are processed. Recall that
the highest confidence about the learnt correspondence is attained when the entropy is
zero. From the plots it can be seen that the average entropy approaches a value of 0,
indicating that the correspondences have be learnt successfully.

Let us now turn to the plots of the endpoint error. The endpoint error is defined as
the length of the difference vector between the ground truth correspondence yj and the
estimated correspondence ŷj :

eEP = ||yj − ŷj ||2. (4.3)

Here, I regard two different correspondence estimates; i) µyi , i.e., the expected value
of Yj under the correspondence distribution and ii) myi , i.e., the location where the
maximum a posteriori (MAP) value of the correspondence distribution is attained. From
the plots of the endpoint error in Fig. 4.3, it can be seen that during the early learning
stage (in the first 30-40 frames), the error for the mean correspondence is smaller than
the error for the map correspondence. This is to be expected as the map correspondence
will initially be located in the upper left corner, while the mean correspondence will be
located in the middle of the image. This is due to the fact that the correspondence
distribution is initialised uniformly and that the MAP correspondence is extracted as
the first occurrence of the distribution’s maximum value, while the mean value will
obviously lie at the centre position.

As learning proceeds, it can be seen that the map estimate slightly outperforms or is
on par with the mean correspondence. In the late learning stage we see that the map
and mean correspondence approach an average endpoint error of 0. I have found that
the map correspondence may serve as an early indicator for the true correspondence,
especially when the event threshold is set rather small and the early estimates of the
correspondence distribution are rather scattered. However, at the same time, the map
correspondence also tends to change or ’jump’ quite rapidly until it is ’locked’ on the
true correspondence.
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Obviously, when no ground truth correspondences are available, the endpoint error
cannot be determined and cannot serve as a confidence measure for the learnt corre-
spondence. Instead, we then rely on the entropy of the correspondence distribution
and/or the eigenvalues of the associated covariance matrix. We therefore require the
entropy of the correspondence distribution to be close to 0, before we are confident that
the correspondence estimate is close to the true correspondence. Likewise, we may re-
gard the sum of the eigenvalues as a measure of confidence, which should be small when
the correspondence estimate is close to the true correspondence. From the plots of the
average coherence measure, it can be seen that the learnt correspondence distributions
are of isotropic shape, indicating a point-to-point correspondence as expected.

Observe that the plots of the average entropy, the average endpoint error and the
average coherence measure are similar when varying the event threshold. However, this
is not the case for the plots of the average energy consumption shown in the last row
of Fig. 4.3. Notice that the peaks in these plots mark cuts within the Forrest Gump
trailer resulting in a large number of events. This behaviour will usually not be seen
for natural image sequences. As expected, the average energy consumption reduces for
larger event thresholds. Figure 4.4 visualises the average energy consumption by means
of processed events versus the attained level of confidence about the true correspondence,
here measured by means of the correspondence distribution’s entropy. To this end, I
accumulate the average energy consumption over the number of processed frames until
the specified entropy of the correspondence distribution is attained. The plot in Fig.
4.4 visualises the energy consumptions for E [H(Yj)] ∈ [18, 17.5, .., .5]. From the figure
it can be seen that most energy is spent for an event threshold of Te = 64 and least
energy is spent for an event threshold of Te = 256. This is to be expected, as for the
larger event threshold the model skips considerably more update steps. While more
update steps are skipped, this has no negative effect on the learning performance. Only
those updates are skipped which are assumed to convey only little information about
the true correspondence. Clearly, if the event threshold is set too large we may not learn
anything about the true correspondence as there might be no events to be detected and
matched.
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Figure 4.3: Correspondence distribution’s attributes: (top to bottom) Plots of the average
entropy, the average endpoint error, the average coherence measure and the average energy con-
sumption (left to right) for varying event thresholds. Best viewed in colour. See text for details.
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Figure 4.4: Average energy consumption for sequence Forrest: Visualisation of the average
energy consumption while varying the event threshold. See text for details.
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4 Learning Stereo Correspondences

Learning correspondences on the pyramid Within the previous experiment, TCA
was applied to the full scale images of the regarded image sequence. As has been dis-
cussed previously in Sec. 3.4, each correspondence distribution is of the same dimension
as the view in which the correspondence is to be learnt. Let N and M denote the
image width and height, respectively, let P be the number of seed pixels and let b be
the number of bytes (B) of the datatype used to store the correspondence distribution.
The memory footprint M in Mebibyte (MiB) is thus given by:

M =
N ·M · P · b

220
. (4.4)

For a 4 byte floating point data type, the memory consumption per seed pixel is then
given by 720 · 540 · 4B · 2−20 ≈ 1.5 Mib, resulting in an overall memory footprint of
1.5 MiB · 54 ≈ 80.1 MiB. The memory footprint may be reduced by either limiting
the number of simultaneously active seed pixels or by applying TCA in a coarse-to-fine
approach as described in Sec. 3.7.

Figure 4.5 visualises correspondences learnt on a coarse scale of sequence Forrest.
Specifically, I apply TCA on the 3rd pyramid level with a spatial resolution of 180×135
pixels. The memory consumption per seed pixel is then 0.09MiB with an overall memory
footprint of 0.09 MiB · 54 ≈ 5.00 MiB. Correspondences learnt on a coarse scale may
then be back-projected on the original scale as described in Sec. 3.7. Subsequently the
back-projected correspondences may serve as a prior and constrain the search space on
the fine scale. From Fig. 4.5 it can be seen that the spatial extend of the back projected
correspondences (given by the blue squares) is large when the uncertainty about the true
correspondence is large. This is due to the fact that the extent of the regions is coupled
with the eigenvalues of the distribution’s covariance matrix. As learning proceeds, this
uncertainty becomes smaller, resulting in a stronger prior on the true correspondence
on the fine scale.
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learning on pyramid level 3 base level projections
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Figure 4.5: TCA on the pyramid of sequence Forrest: Correspondences are learnt on a coarse
scale and constitute a prior on the true correspondence on the base level. In this figure, learning is
performed on pyramid level 3. Best viewed in colour. See text for details.
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4.2.3 Evaluation on Real World Data

Let us now turn to an evaluation of TCA on real world multi-camera sequences. Specif-
ically, I will present results for sequences GUBo1616, GUBo1606 and GUCar. See Sec. A
for sample images and details on the camera setup.

Note that TCA requires rather long image sequences, containing a considerable amount
of apparent motion. While there are many well-known vision benchmark data sets in
the area of stereo and motion estimation, e.g., the Middlebury benchmark (Baker et al.
2011), the problem is that these contain too few images for the presented approach to
be applicable.

4.2.4 Experiments on GUBo1616

As for the experiments on synthetic data in Sec. 4.2.1, prior learning we have to set
the model parameters σs and σh|s = σg|s. The actual values of these parameters depend
on the signal noise level and the GVTF which are initially unknown. Recall from the
discussion in Sec. 3.6 that we may approach this problem by either estimating the
signal noise and the GVTF prior learning, or by selecting the model parameters in a
conservative manner which means to overestimate the true parameters. This means
that we enlarge the matching envelope. Therefore, more pixels will be matched in each
time step than would be matched when the parameters are precisely known. In the
following experiments I chose the second approach and selected the model parameters
rather conservatively according to σs = 6, 000 and σh|s = σg|s = 3, 000. As will become
clear in the following, the actual choice of these values is not critical as long as the true
parameters are not underestimated.

Figure 4.6 visualises the outline of the seed pixels in the left view as well as the
learning of correspondences after 100, 2, 000 and 4, 000 frames have been processed. It
can be seen that the uncertainty about the learnt correspondences is large in the early
learning stages (after 100 frames). As more frames are processed, i.e., more events are
detected and matched, the uncertainty decreases as expected. The last row of Fig.
4.6 shows the filtered learning results, where only those correspondences are shown for
which the entropy of the associated correspondence distribution is smaller than 1. In
this experiment, this is the case for 39 out of the 45 seed pixels. Taking a closer look
onto the outline of the seed pixels, it can be seen that some of them lie on bushes or on
the pavement, where we expect to detect only few events. This results in correspondence
distributions with high entropy, i.e., high uncertainty about the true correspondence.
Clearly, these are the seed pixels which are filtered out in Fig. 4.6 (bottom row). By
visual inspection, the remaining correspondences have been learnt accurately.
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Figure 4.6: Exemplary results for GUBo1616: Learning correspondences from a static binocular
camera setup. For a set of seed pixels in the left view (blue marks), correspondences learnt in
the right view are shown (red circles) after 100, 2, 000 and 4, 000 frames have been processed,
respectively. Green covariance error ellipses per seed pixel visualise the certainty about the estimated
correspondence. Best viewed in colour and up scaled. See Sec. 4.2.4 for details.
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Let us now regard the attributes of the correspondence distributions. As for the ground
truth setup in Sec. 4.2.1, I regard the entropy, the coherence measure, the eigenvalues
of the covariance matrix and the spent energy averaged over all seed pixels, respectively.
I provide these measures based on the complete set of seed pixels as well as for a filtered
subset of seed pixels, as described before. Figure 4.7 shows plots of the correspondence
distribution’s attributes over 4, 000 frames. It can be seen that the average entropy
decreases over time and is close to 0 after 4, 000 frames. This is also the case for
the coherence measure and the eigenvalues. When comparing the plots of the filtered
and the complete set of seed pixels, it can be seen that the measures are considerably
larger for the complete set (= higher uncertainty), as expected. It can be seen that
the correspondence distribution’s entropy and the associated eigenvalues capture the
certainty about the learnt correspondence. Note that the coherence measure alone is
only a sufficient condition for a learnt correspondence, as only the ratio of the eigenvalues
of the associated covariance matrix is regarded. Observe that the number of processed
frames and the number of processed events differ largely. For example, the average
entropy drops below 2 after 1, 000 processed frames (cf. Fig. 4.7 (top left)) compared to
20 processed events (cf. Fig. 4.7 (bottom)). Hence the number of processed frames is
no indicator for the learning performance.
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Figure 4.7: Correspondence distribution’s attributes for GUBo1616: Plots of the correspondence
distribution’s entropy, coherence measure, eigenvalues of the covariance matrix, spent energy and
entropy vs. spent energy averaged over all seed pixels, respectively. Best viewed in colour. See Sec.
4.2.4 for details.

109



4 Learning Stereo Correspondences

Next, I learn correspondences for the same set of seed pixels, but on a coarse scale.
Specifically, correspondences are learnt on the 3rd level of the image pyramid. The
resolution of the input images reduces from 640× 480 pixels to 160× 120 pixels. Hence
the memory footprint reduces from 640 · 480 · 4B · 2−20 ≈ 1.18 Mib, to 160 · 120 · 4B ·
2−20 ≈ 0.07 Mib per seed pixel (cf. Eq. 4.4). Figure 4.8 (left column) visualises the
learnt correspondences after 600, 1, 500 and 4, 000 processed frames. Additionally, the
figure visualises (right column) the learnt correspondences when back-projected onto
the fine (=original) scale. Recall from Sec. 3.7 that by back-projected I refer to a
rectangular region on the original scale, where the true correspondence is expected to
lie. Every single pixel position in this region could be the true correspondence with
equal probability. Observe that the spatial extend of this region is coupled with the
uncertainty about the location of the correspondence on the coarse scale. The larger
the uncertainty on the coarse scale, the larger the spatial extend on the fine scale
where the true correspondence may lie. This can be seen throughout the plots in Fig.
4.8. Figure 4.9 shows plots of the correspondence distribution’s attributes over 7, 000
frames. The plots are similar to the ones obtained when learning on the fine scale,
i.e., the average entropy, the coherence measure and the eigenvalues of the covariance
matrix decrease over time. As has been explained in Sec. 3.7, we may now refine
the learnt correspondences on a finer scale and restrict the search range based on the
back-projected correspondences from the coarse scale.
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Figure 4.8: Exemplary results for GUBo1616 (coarse scale): Learning correspondences from a
static binocular camera setup on the third level of the spatial pyramid. (first column) Correspondences
learnt on the coarse scale after 600, 1,500 and 4,000 frames have been processed. (second column)
Correspondences learnt on the coarse scale are back-projected onto the fine scale and constitute a
rectangular region where the true correspondence is expected. The spatial extend of these regions is
coupled with the eigenvalues of the correspondence distribution’s covariance matrix. See Sec. 4.2.4
for details.
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Figure 4.9: Correspondence distribution’s attributes for GUBo1616 (coarse scale): Plots of the
correspondence distribution’s attributes obtained for the 3rd level of the spatial pyramid. Entropy,
coherence measure, eigenvalues of the covariance matrix, spent energy and entropy vs. spent energy
averaged over all seed pixels, respectively. Best viewed in colour. See Sec. 4.2.4 for details.
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Learning the GVTF Once as set of pixel correspondences has been learnt, we may
proceed and estimate the GVTF as described in Sec. 3.6. This analysis may not only
be done on the fine scale but could as well be performed on a coarse scale as shown in
the following.

In a first experiment, I estimate the GVTF on the original resolution of the input
images (=fine scale). Recall from Sec. 3.4.2 that I learn a GVTF by means of fitting a
low order polynomial to a grey value comparagram. In order to build the comparagram,
I select all correspondences for which the entropy of the associated correspondence
distribution is below a threshold TH = 1. Then, I fill the comparagram with the pairs
of grey values selected at the seed pixel and its correspondence estimate. Only those
grey value pairs will be added, for which the local structure of the seed pixel and its
correspondence indicates a rather homogeneous area. To this end, I determine the
eigenvalues of the structure tensors and only add a grey value pair when Eq. 3.135 is
fulfilled with Tφ = 10. (cf. Sec. 3.4.2 for details).

Figure 4.10 visualises the learnt GVTF based on the proposed and the näıve scheme,
after having processed 1,000, 5,000 and 10,000 frames. Recall from Sec. 3.4.2 that in
the näıve scheme the comparagram is build without regarding the local structure ten-
sor. Let us now regard the learnt GVTFs after 1,000 frames have been processed. In
the grey value interval [100, 150] the uncertainty considerably decreased for both the
proposed and näıve learning scheme. A noticeable difference between the two learn-
ing schemes can be seen in the grey value interval [160, 250]. While for the proposed
learning scheme, the uncertainty about the grey value mapping is close to the initial
uncertainty, the uncertainty considerably decreased for the näıve scheme. This can also
be seen for the grey value interval [30, 100]. Clearly, this is explained by the filtering
procedure employed by the proposed learning scheme based on the analysis of the local
structure tensor (cf. Sec. 3.6). In the proposed learning scheme, less grey value pairs
are added to the comparagram than for the näıve scheme, hence the remaining uncer-
tainty is larger. Next, let us regard the learnt GVTFs after 5, 000 and 10, 000 frames
have been processed. It can be seen that now the uncertainty is larger for the näıve
learning scheme, especially in the grey value ranges [50, 100] and [160, 250]. From this
we conclude that the proposed learning scheme induces less outlier grey value pairs in
the comparagram, i.e., the variance of the grey value pairs added to the comparagram
is smaller. However, we may also conclude that the geometric error in the learnt cor-
respondences is sufficiently small such that a reasonable GVTF may also be learnt via
the näıve scheme.

Figure 4.13 visualises the GVTF learnt on a coarse scale, here for level 3 of the spatial
pyramid. It can be seen that for the proposed learning scheme, the results are similar
to the ones obtained on the original scale. While the uncertainty for the näıve scheme
considerably decreased for the larger grey values, a clear outlier has been introduced for
the grey values in the vicinity of grey value 75.
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In order to verify that the learnt GVTF indeed captures the illumination differences
among the views, I proceed as follows. First, I estimate a spatial transformation relat-
ing the left and right view of the regarded image sequences. This is done by selecting
the set of correspondences for which the entropy of the associated correspondence distri-
bution is below a threshold TH = 1. From the selected correspondences a homography
is estimated (robustly via RANSAC). I then spatially register the left and right view
and compute the difference image. Figure 4.11 visualises the difference image for a
sample frame pair of sequence GUBo1616. Let d be some difference value lying in the
interval [−255, 255]. I rescale d according to d̂ = uint8(d ·4+128) to the interval [0,255],
with a value of 128 corresponding to a difference of 0. This is done for visualisation
purposes only. By visual inspection, it can be seen that the difference image of the
non-compensated views is considerably darker than for the GVTF compensated views,
which indicates larger (negative) grey value differences. This can also be seen from
the histogram of the (non-rescaled) difference image in Fig. 4.11, for both the GVTF
compensated and non-compensated registered views. While the differences of the com-
pensated views cluster around a value of 0, the differences of the non-compensated views
shows a bias. Figure 4.12 shows the difference images and histograms for a different
pair of frames. From these, we may draw the same conclusions as previously.

Note that I do not expect to obtain perfectly registered images, i.e., differences which
are close to 0 for every pixel location. This is due to several reasons, among them that
the regarded scene only approximately lies in a single plane. Registering the views by
a homography will lead to larger errors where the scene deviates from this planar as-
sumption. This can be seen from large difference values at the light poles. Furthermore,
I did not compensate for camera lens distortions.

To summarise, we have seen that the proposed GVTF learning scheme successfully
captures the illumination differences for this real world camera setup. In a real world
application, the learning of correspondences and the GVTF may now be iterated over
time.
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Figure 4.10: Learning the GVTF for GUBo1616: Given a set of learnt correspondences, the GVTF
is estimated as described in Sec. 3.4.2. (first column) Proposed learning scheme, after 1,000, 5,000
and 10,000 frames have been processed. The identity GVTF is shown in red, the fit to a 3rd order
polynomial is shown in blue (LS fit) and black (WLS fit). Estimates of µ̂φij(gi) and σ̂2

φij(gi)
define

the grey uncertainty area. (second column) Näıve learning scheme, leading to a GVTF estimate with
considerably higher uncertainty. See Sec. 4.2.4 for details. Figure only interpretable when viewed in
colour.
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Figure 4.11: Difference images and error histogram for GUBo1616: Difference image of a sample
frame pair, where the left and right view are spatially registered via a homography estimated from
learnt correspondences. Grey value differences are mapped to the interval [0,255], where a grey
value of 128 indicates a grey value difference of 0. (first column, top to bottom) Sample left view
of GUBo1616, difference image and histogram of the difference image when the right view is GVTF
transformed. (second column, top to bottom) Sample right view of GUBo1616, difference image and
corresponding histogram when the illumination differences are not compensated. See Sec. 4.2.4 for
details.
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Figure 4.12: Difference images and error histogram for GUBo1616 (2): Difference image of a
sample frame pair, where the left and right view are spatially registered via a homography estimated
from learnt correspondences. Grey value differences are mapped to the interval [0,255], where a grey
value of 128 indicates a grey value difference of 0. (first column, top to bottom) Sample left view
of GUBo1616, difference image and histogram of the difference image when the right view is GVTF
transformed. (second column, top to bottom) Sample right view of GUBo1616, difference image and
corresponding histogram when the illumination differences are not compensated. See Sec. 4.2.4 for
details.

117



4 Learning Stereo Correspondences

proposed GVTF learning scheme näıve GVTF learning scheme
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Figure 4.13: Learning the GVTF for GUBo1616 (coarse scale): Given a set of learnt correspon-
dences, the GVTF is estimated as described in Sec. 3.4.2. (first column) Proposed learning scheme,
after 10,000 frames have been processed. The identity GVTF is shown in red, the fit to a 3rd order
polynomial is shown in blue (LS fit) and black (WLS fit). Estimates of µ̂φij(gi) and σ̂2

φij(gi)
define

the grey uncertainty area. (second column) Näıve learning scheme, leading to a GVTF estimate with
considerably higher uncertainty and a severe outlier for grey values in the vicinity of grey value ≈ 75.
See Sec. 4.2.4 for details. Figure only interpretable when viewed in colour.
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4.2.5 Experiments on GUBo1606

Sequence GUBo1606 comprises a similar setup as GUBo1616, except that the cameras are
now equipped with two different types of lenses: the focal length of the left camera is
16 mm while the focal length of the right camera is 6 mm.

I select the same model parameters as in Sec. 4.2.5 and again select a regular grid of
seed pixels in the left view. Figure 4.14 visualises the seed pixels in the left view as well
as the learning of correspondences after 500, 2,000 and 5,100 frames have been processed.
Similar to the results presented for sequence GUBo1616, the uncertainty about the learnt
correspondences decreases over time as more events are detected and matched. When we
filter out those correspondences for which the entropy of the associated correspondence
distribution is above 1, we see from Fig. 4.14 (bottom row) that for 35 out of the 45
seed pixels, the correspondence has been learnt.

Figure 4.15 shows plots of the correspondence distribution’s attributes over 5000
frames. It can be seen that the average entropy decreases over time and is close to
0 after 2,500 frames (for the filtered subset). This is also the case for the coherence
measure and the eigenvalues of the covariance matrix. The plot of the average energy
spent is similar to the one for sequence GUBo1616 and 15% of the seed pixels show an
event simultaneously. This is to be expected as the scene statistics in terms of observed
motion patterns are obviously similar.

As for GUBo1616, we again see that the number of processed events until a specified
level of confidence is reached is considerably smaller than the number of processed
frames. For sequence GUBo1606 the average entropy becomes smaller than 1 after 40
events, compared to over 1,000 processed frames.

Overall, we see that for most of the seed pixels TCA was able to estimate the correct
correspondence, though the sequence is far more challenging than GUBo1616, as both
the orientation and the scaling between the views is largely different. Taking a closer
look on the layout of the seed pixels (cf. Fig. 4.14) it can be seen that only those
correspondences are missed which lie on bushes, trees or buildings (top left) where no
or only few events are detected and matched. However, based on the correspondence
distribution’s entropy or associated eigenvalues, these false matches are readily detected.

Learning the GVTF Figure 4.16 visualises the learnt GVTF based on the proposed
and the näıve scheme, after having processed 1,000, 5,000 and 10,000 frames. Let us
now regard the learnt GVTFs after 1,000 frames have been processed.

For the proposed learning scheme, the uncertainty decreased over the grey value
interval [25, 150] but the uncertainty intervals appear more noisy than those obtained
for GUBo1616. For the näıve update scheme, we see that the comparagram is noisy and
contains gross outliers. As more frames are processed, the uncertainty about the GVTF
decreases further for the proposed learning scheme. However, only few grey value pairs
in the interval [160, 250] are observed. For the näıve scheme, more outliers are added
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to the comparagram and we may not expect to approximate the true GVTF sufficiently
well.

Let us inspect the difference between the results for GUBo1616 and GUBo1606 in more
detail. Regarding the proposed scheme, we see that the overall uncertainty about the
learnt GVTF is smaller for GUBo1616. The näıve scheme failed to estimate the GVTF
for GUBo1606, due to gross outliers in the comparagram. The reason for this is the large
scale difference among the views where even a small spatial error in the correspondence
estimate may lead to gross outliers in the comparagram.

I estimate a spatial transformation relating the left and right view as described previ-
ously. Figure 4.11 and Fig. 4.12 visualise the difference images and difference histograms
for two sample frames of GUBo1606. It can be seen that the difference image of the non
compensated registered views is biased, while the differences for the GVTF compen-
sated views cluster around 0. Overall, the histograms shown have a higher variance
than those for GUBo1616. One reason for this is that the second view is considerably
enlarged during registration, hence, differences due to image interpolation become more
apparent.
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Figure 4.14: Exemplary results for GUBo1606: Learning correspondences from a static binocular
camera setup. For a set of seed pixels in the left view (blue marks), correspondences learnt in
the right view are shown (red circles) after 500, 2,000 and 5,100 frames have been processed,
respectively. Green covariance error ellipses per seed pixel visualise the certainty about the estimated
correspondence. Best viewed in colour and up scaled. See Sec. 4.2.5 for details.
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Figure 4.15: Correspondence distribution’s attributes for GUBo1606: Plots of the correspon-
dence distribution’s entropy, coherence measure, eigenvalues of the covariance matrix, spent energy
and entropy vs. spent energy averaged over all seed pixels, respectively. Best viewed in colour. See
Sec. 4.2.5 for details.

122



4.2 Evaluation

proposed GVTF learning scheme näıve GVTF learning scheme
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Figure 4.16: Learning the GVTF for GUBo1606: Given a set of learnt correspondences, the GVTF
is estimated as described in Sec. 3.4.2. (first column) Proposed learning scheme, after 1,000, 5,000
and 10,000 frames have been processed. The identity GVTF is shown in red, the fit to a 3rd order
polynomial is shown in blue (LS fit) and black (WLS fit). Estimates of µ̂φij(gi) and σ̂2

φij(gi)
define

the grey uncertainty area. (second column) Näıve learning scheme, leading to a GVTF estimate with
considerably higher uncertainty. See Sec. 4.2.5 for details. Figure only interpretable when viewed in
colour.
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Figure 4.17: Difference images and error histogram for GUBo1606: Difference image of a sample
frame pair, where the left and right view are spatially registered via a homography estimated from
learnt correspondences. Grey value differences are mapped to the interval [0,255], where a grey
value of 128 indicates a grey value difference of 0. (first column, top to bottom) Sample left view
of GUBo1606, difference image and histogram of the difference image when the right view is GVTF
transformed. (second column, top to bottom) Sample right view of GUBo1606, difference image and
corresponding histogram when the illumination differences are not compensated. See Sec. 4.2.5 for
details.
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Figure 4.18: Difference images and error histogram for GUBo1606 (2): Difference image of a
sample frame pair, where the left and right view are spatially registered via a homography estimated
from learnt correspondences. Grey value differences are mapped to the interval [0,255], where a grey
value of 128 indicates a grey value difference of 0. (first column, top to bottom) Sample left view
of GUBo1606, difference image and histogram of the difference image when the right view is GVTF
transformed. (second column, top to bottom) Sample right view of GUBo1606, difference image and
corresponding histogram when the illumination differences are not compensated. See Sec. 4.2.5 for
details.
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4 Learning Stereo Correspondences

4.2.6 Experiments on GUCar

The experiments presented so far consisted of static views of an environment with visual
events, where the scene depth was virtually not changing, leading to point-to-point
correspondences only. In the following I show that TCA can also be applied to a moving
stereo camera setup. Sequence GUCar was recorded while driving in urban traffic and
on a highway. As for the other sequences, the cameras where not photometrically
calibrated but operate in auto exposure mode. It can also be seen that the left view is
considerably more blurred than the right view. Therefore, I selected very conservative
model parameters according to σs = 10, 000 and σh|s = σg|s = 5, 000 with an event
threshold of Te = 500.

In this sequence, I expect to learn point-to-line correspondences as the scene depth
will change for most of the pixels over time. Nevertheless, I expect the correspondence
distributions to be of a point-like structure, as the learning scheme is basically memory
less which results in correspondence distributions which only represent short-time rela-
tionships. For example, imagine that the scene depth is constant over a period of time
and that a correspondence is learnt and represented by the correspondence distribution.
If the scene depth now changes, the true correspondence will move along the epipolar
ray. Consequently, the correspondence estimate will adapt to the changed scene depth.
However, the learning scheme will now ’forget’ the previously learnt correspondence as
there is no longer evidence for this correspondence among the detected and matched
events. This problem may be approached by building a histogram over all correspon-
dence estimates where the associated entropy is below a given threshold. However, this
is considered future work.

In order to evaluate the accuracy of the learnt correspondences, I estimate a funda-
mental matrix (cf. Sec. 2.2) relating the left and right view based on 12 hand selected
correspondences. Note that I do not compensate for lens distortions and that a more
robust estimate of the fundamental matrix could be obtained when more correspondence
would be used (cf. (Hartley and Zisserman 2004)). However, my objective merely is to
demonstrate that the learnt correspondences lie on/close to the epipolar line but I will
expect mild deviations from it.

Figure 4.19 visualises the outline of the seed pixels in the left view as well as the
learning of correspondences after 100, 1,000 and 5,000 frames have been processed.
Additionally, for each of the seed pixels I plot the corresponding epipolar line in the right
view. Similar to the previous results, the uncertainty about the true correspondence
reduces as more events are detected and matched. After 5,000 processed frames (cf.
Fig. 4.19 (bottom)) it can be seen that all of the learnt correspondences lie on or close
to the epipolar lines. This is also the case for the single correspondence with a large
uncertainty.

Let us regard the correspondence with the remaining large uncertainty in more detail
(cf. Fig. 4.19 (bottom)). One could ask, why the error ellipse shows an elongated (or
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Figure 4.19: Exemplary results for GUCar: Learning correspondences from a moving binocular
camera setup. For a set of seed pixels in the left view (blue marks), correspondences learnt in
the right view are shown (red circles) after 100, 1,000 and 5,000 frames have been processed,
respectively. Green covariance error ellipses per seed pixel visualise the certainty about the estimated
correspondence. Best viewed in colour and up scaled. See Sec. 4.2.6 for details.
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Figure 4.20: Schematic description of a structure match: Depending on the scene content, the
set of pixels in the right view which show a similar event as the seed pixel may resemble 1d, i.e., line
like structures. This may result in line like structures within the correspondence distribution which
do not coincide with the true epipolar line.

line like) structure which does not align with epipolar line. The reason for this is most
easily explained based on the following example. Regard Fig. 4.20, which shows two
sample frames of GUCar and a selected seed pixel between two time steps t−1 and t. The
grey value at the seed pixel at time t−1 (blue mark) is small compared to the grey value
at time t (close to white) where the seed pixels lies on the white lane mark. Assume
that an event is detected at the seed pixel at time t. Let us now regard the set of pixel
locations which obey a compatible event in the second view. Clearly, these are now all
pixel locations along the white lane mark (where only a subset of them is shown in Fig.
4.20). All of these pixel locations are equally likely to be the true correspondence as all
of them obeyed a similar event. If this occurs sufficiently often, a line like structure will
evolve within the correspondence distribution. Within sequence GUCar, this will often
be the case due to lane marks in different orientations.

Figure 4.21 shows plots of the correspondence distribution’s attributes over 5,200
frames. From these, we may draw similar conclusions as for the previously shown
results. Only the plot of the average energy is considerably different compared to the
one obtained for sequences GUBo1616 and GUBo1606. As the cameras are moving in
GUCar, virtually all pixels will be subject to scene/object motion, resulting in a larger
number of pixels showing an event. We may reduce the average energy consumption
by choosing a larger event threshold as shown in Fig. 4.22. These plots were obtained
for an event threshold of Te = 1, 200 (compared to 500) leaving all other parameters as
before. It can be seen that the average energy consumption became smaller and that
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less update steps were needed (on average) to learn the correspondence distribution up
to a specified level of uncertainty. For example, for an event threshold of Te = 500,
roughly 150 update steps (=detected events) were performed until the correspondence
distribution’s entropy is smaller than 2, compared to 100 update steps for the larger
event threshold.
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Figure 4.21: Correspondence distribution’s attributes for GUCar: Parameter setting
(10, 000, 6, 000, 600). Plots of the correspondence distribution’s entropy, coherence measure, eigen-
values of the covariance matrix, spent energy and entropy vs. spent energy averaged over all seed
pixels, respectively. Best viewed in colour. See Sec. 4.2.6 for details.
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Figure 4.22: Correspondence distribution’s attributes for GUCar (doubled event threshold):
Parameter setting (10, 000, 6, 000, 1, 200). Plots of the correspondence distribution’s entropy, co-
herence measure, eigenvalues of the covariance matrix, spent energy and entropy vs. spent energy
averaged over all seed pixels, respectively. Best viewed in colour. See Sec. 4.2.6 for details.

131



4 Learning Stereo Correspondences

Next, I apply the learning scheme on a coarse scale of GUCar, specifically on the 3rd
pyramid level. The resolution of the input images reduces from 640 × 480 pixels to
160×120 pixels. This results in the same memory footprint per seed pixel as in GUBo1616

(cf. Sec. 4.2.4), given by 160 · 120 · 4B · 2−20 ≈ 0.07 Mib (cf. Eq. 4.4). Figure 4.23 (left
column) visualises the learnt correspondences after 800, 4,200 and 14,200 processed
frames. In Fig. 4.23 (right column) the learnt correspondences are visualised when
back-projected onto the fine (=original) scale. Additionally, the corresponding epipolar
lines are shown. It can be seen that the back-projected correspondences encapsulate
parts of the epipolar ray. As has been explained in Sec. 3.7, we may now refine the
learnt correspondences on a finer scale and restrict the search range based on the back-
projected correspondences from the coarse scale.
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learning on pyramid level 3 base level projections
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Figure 4.23: Exemplary results for GUCar (coarse scale): Learning correspondences from a mov-
ing binocular camera setup on the third level of the spatial pyramid. (first column) Correspondences
learnt on the coarse scale after 800, 4,200 and 14,200 frames have been processed. (second column)
Correspondences learnt on the coarse scale are back-projected onto the fine scale and constitute a
rectangular region where the true correspondence is expected. The spatial extend of these regions is
coupled with the eigenvalues of the correspondence distribution’s covariance matrix. See Sec. 4.2.6
for details.

133
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4.3 Summary and Conclusion

I presented the applicability of TCA to learn correspondences in real world binocular
camera setups. Based on the proposed scheme, correspondences and grey value transfer
functions can be learnt for uncalibrated cameras, where the camera views are translated
and/or rotated w.r.t. to each other or show a large scale difference. The cameras may
be static or moving. The only assumption that is made is that the relative orientation
of the cameras is fixed. I stress that TCA learns correspondence distributions, which
not necessarily represent the true correspondence at a specific point in time.
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5.1 Introduction

Previously, we have seen that stereo correspondences can be learnt unsupervised via
TCA. I will now turn to the problem of learning motion within a monocular stream
of images taken from a (not necessarily) moving camera. As for the stereo case, I do
not compute individual motion vector fields, which connect two particular images of a
sequence. Instead, I learn the statistics of such motion vector fields without explicitly
computing motion vectors. Specifically, I learn an average motion map of the regarded
scene. Knowledge about the average motion may then serve as a prior in estimating
instantaneous motion, i.e., optical flow, or to detect abnormal motion.

Besides learning average motion maps over long image sequences, I am also interested
in learning basis flow fields which can be associated with the camera’s ego-motion. To
this end, I introduce a simple latent variable model in which the ego-motion is the
latent variable which may take on the states {forward, left, right}. As will be shown in
the following, with each of these states, a characteristic average motion map is associated
which can be learnt via TCA. During training, I extract the current motion state based
on a method known as phase correlation (Kuglin and Hines 1975b). However, I also
show that the state of the latent variable may as well be inferred by applying TCA in
a specific manner.

5.1.1 Related Work

Up to now, many different algorithms to estimate the optical flow have been proposed,
ranging from local to global methods such as the classical work by Lucas and Kanade
(Lucas and Kanade 1981) and Horn and Schunck (Horn and Schunck 1981). Since then,
the basic ideas of brightness constancy and/or locally constant motion have been used
and extended many times (see (Baker et al. 2011; Sun, Roth, and Black 2010) for a
recent overview). However, these methods do not explain how motion perception may
evolve and may be learnt over time.

Learning of motion patterns (persistent motion) has found attention in the computer
vision community, especially for video surveillance. Here, the goal is to model and
extract persistent or normal motion patterns, which may be used to detect abnormal
behaviour or may be used as a prior in a tracking application. In (Wright and Pless
2005), motion patterns are extracted based on the 3-D structure tensor computed at
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each pixel. In (Grimson et al. 1998) motion patterns are extracted from object tracks.
In (Hu et al. 2008) motion patterns are determined based on sparse or dense optical
flow fields. Motion fields are clustered to form different motion patterns. Compared to
these approaches, I never build object tracks and I never explicitly compute the optical
flow. Instead, I apply TCA and solely rely on the temporal difference of single pixels
and aggregate motion/correspondence candidates over time. I may use the term motion
and correspondence candidate interchangeably in the following; a motion vector simply
encodes a pixel correspondence between temporally consecutive images. The presented
approach is able to represent multiple (different) dominant motions observed at a single
pixel as well.

In the vision community, learning optical flow is mainly addressed by estimating
(=learning) the parameters of a specific motion model from ground truth data. The
focus clearly lies on designing methods that advance the state-of-the-art by means of
accuracy and/or running time on, e.g., the Middlebury benchmark (Baker et al. 2011).
Sun et al. (Sun, Roth, Lewis, et al. 2008) learn a statistical model of the spatial
properties of optical flow by learning the parameters of the model from ground truth
data. They show that the model captures the statistics of optical flow and outperforms
several standard methods. In contrast to this, I am interested in exploring how the
statistics of optical flow may be learnt from scratch without any supervision or ground
truth.

Roberts et al. (Roberts et al. 2009) learn a subspace of dense optical flow. Based
on the learnt optical flow subspace a dense motion map may be inferred from sparse
measurements. Furthermore, the learnt subspace may be used to estimate the ego-
motion of a moving platform equipped with cameras. Sparse flow measurements are
generated from Harris corners and tracked using the KLT method. A dense map is then
generated by identifying the subspace coordinates of the sparse flow. Subsequently, a
linear mapping from ground truth platform motion to subspace coordinates is estimated
and used for ego-motion estimation. Based on the model described in (ibid.), Herdtweck
and Curio (Herdtweck and Curio 2012) estimate the platform heading from monocular
visual cues. They infer the Focus of Expansion (FoE), and require sparse flow and
incremental platform motion for training. The FoE is the spatial location from which
all optical flow vectors seem to emanate. The FoE may be computed based on the
divergence of the optical flow field. In contrast to this, I present experimental results
for inferring the hidden variables proportional to the yaw rate of a moving camera
without the need for platform motion data.

In the deep learning community, there is an interest in learning features that relate
pairs of images by means of spatial or spatiotemporal mappings. These features are
typically given in form of learnt filters (=parameters) of energy-models and probabilistic
generative models (Coates et al. 2011; Le et al. 2011; Memisevic 2013). While these
methods were shown to extract meaningful mappings, usually the learning step of these
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models is rather involved. In contrast to this, the presented method can adapt to the
computational power available while being easily parallelised if desired.

5.2 TCA for Motion (TCAM)

5.2.1 Approach

As for the stereo case, I learn average motion by applying TCA to two streams of
images. However, the image streams are now not originating from two cameras, but are
temporally shifted versions of the same monocular image stream.

Specifically, I regard a camera Ci and its (monocular) image sequence It ∈ RM×N , t =
0, 1, ..., T (cf. Sec. 2.1). From image sequence It, I generate a temporally shifted image
sequence It;τ , t = 0 + τ, 1 + τ, ..., T + τ . Throughout the following I set τ = 1. Then,
between two consecutive time steps t and t + 1, a correspondence between two pixel
locations is encoded by means of the optical flow vector.

The event signal generation is carried out as for the stereo case. As has been described
previously, the correspondence distributions estimated via the posterior update scheme
tend to develop a point like structure. This is due to the fact that the model forgets a
learnt correspondence as soon as there is not enough evidence for it within the regarded
data. A correspondence will only be persistent if evidence in the form of matched events
is detected regularly (see Sec. 4.2.6 for a detailed discussion). Within the regarded
sequences, the optical flow which encodes the pixel correspondences between consecutive
time steps varies considerably. This is different from the stereo case where the observed
depth profiles are far more regular. From my experiments, I found it essential to perform
the event matching via the approximate update scheme (cf. Eq. 3.61). Specifically, for
each event detected at a seed pixel, I identify those pixel locations which show a similar
grey value change within time t and t+1, as they are likely to be the true corresponding
pixel. Typically, there will be a set of pixels showing a similar event, and without taking
further information into account it is in general not possible to identify the single true
correspondence between two time steps. Instead, we will always have a set of possible
correspondences which are given by the set:

Ωpc(xi, t) = {yj ∈ Ij : (5.1)

fe,t(si[xi, t− 1], si[xi, t]) > Te

∧ fm(si(xi, t− 1), sj(yj , t− 1)) < Tm (5.2)

∧ fm(si(xi, t)), sj(yj , t)) < Tm}

with fm(a, b) = |a− b| and where Tm = 2σ accounts for the noise standard deviation.
The set of matched events Ωxi at time t may be seen as a weak hypothesis for the true

correspondence; the set of all pixel coordinates is reduced by discarding pixels showing
no or a different event. A strong hypothesis for the true correspondence is then formed
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by adding up the possible correspondences over time in one accumulator array Axi per
seed pixel xi (cf. Eq. 3.61).

Upon normalisation (such that the accumulator counts sum to one), the accumulator
array is processed as the correspondence distribution. However, the accumulator will
also contain a considerable amount of noise which makes it necessary to perform a pre-
processing prior extracting first and second order central moments. To this end, the
accumulator is subject to a threshold operation where each cell count smaller than 50%
of the accumulator’s maximum value is set to zero. In other words, I only keep those
accumulator cells for which the probability of being the true correspondence is above
chance. Throughout the following experiments, the event matching is performed via the
approximate update scheme.

In contrast to the stereo case, I do not learn and apply a GVTF as I assume the camera
transfer function to be static (at least over several frames). Furthermore, I assume that
illumination differences between triplets of images are negligible. The method will not
suffer from slow and gradual illumination changes, as the events need signal changes
above a certain threshold value. Sudden strong illumination changes (flashes etc.) will
certainly cause event coincidences at many or all candidate channels. However, these
effects will average out over time. Similarly, if occlusions only appear from time to
time, this again has no influence on learning the average flow fields as this effect should
average out too. In a textureless region, we may not learn anything as no motion can
be detected and hence no events occur.

Recall that for the stereo case, I assumed that the true correspondence may be located
at any valid pixel location in the second view. Therefore, the event matching was
performed over all candidate channels. For the motion case, the range of typical motion
can usually be approximated and it is almost always much smaller than the overall
image size. The search area, i.e., the area in which events are matched may therefore
be restricted to a window of size wx × wy centred on the regarded seed pixel xi with
accumulator Axi ∈ Rwx×wy . Of course, we now have to assume a topological order
on the pixels. Parameters wx and wy represent the maximum average flow that can
be learnt. If wx and wy are too small, all possible correspondences will be random,
resulting in a pure noise distribution. If wx and wy are larger than the true average
flow, we will learn the average flow, but will obviously waste computational resources.

As for the stereo case, in general we may only learn the average correspondence re-
lation and thus the average optical flow at pixel location xi. Recall from Sec. 3.4 that
it depends on the actual scene structure whether this average correspondence relation,
estimated over many frames, coincides with the true correspondence at any single time
step. I stress again that TCA is not meant as a competitor to classic stereo or flow
algorithms tailored to return instantaneous (per frame) correspondences, but may be
seen as a prior generator. There are good reasons to make use of well-engineered al-
gorithms to estimate highly accurate optical flow, but my objective is to demonstrate
that correspondence relations may be learnt and updated over time without any super-
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vision and minimal assumptions about the given data; all that is needed are intensity
changes above the sensor noise level. Observe that the average correspondence relations
still contain valuable information, e.g. in order to guide a higher level process, restrict
search areas, or generate confidence information.

The analysis of learnt correspondence accumulators is done as for the stereo case. Af-
ter a sufficient number of frames have been processed, the accumulator will encode the
average correspondence and thus the average optical flow observed within the sequence
at location xi. After pre-processing and normalising the accumulator as described pre-
viously, I extract the most likely correspondence as the location of the accumulator’s
mean and compute a confidence measure from the accumulator’s covariance matrix C
(cf. Sec. 3.5).

In order to visualise the confidence for a dense flow map, I adopt a colour encoding,
similar to the colour coding of flow vectors (see next section for details).

5.2.2 Parametric Flow Model

Typically, a sparse set of average flow vectors is learnt. From this set of sparse flow
vectors, we may estimate a parametric model for the optical flow which takes the avail-
able uncertainty information explicitly into account. Based on the parametric model,
we may then interpolate a dense flow field or initialise the learning phase for a newly
selected seed pixel.

To this end, I introduce a bi-quadratic model for the optical flow similar to the one
presented by us in (Guevara et al. 2012). For a given set of seed pixels {(x1, x2)Ti,n =

xi,n}N we learn their corresponding average flow vectors {(u, v)Ti,n = ui,n}N via TCA
as described previously. Additionally, we obtain covariance matrices {Cn}N from the
accumulator arrays, encoding the uncertainty about the flow estimate. We define the
bi-quadratic polynomial:

f(x,θ) = A(x) · θ, (5.3)

where A(x) is a 2× 12 matrix given as:

A(x) =

(
1 x1 x2 x1x2 x21 x22 0T6
0T6 1 x1 x2 x1x2 x21 x22

)
, (5.4)

and where θ is the sought 12×1 parameter vector. Our goal is to estimate the parameter
vector θ by minimising the squared difference between estimated flow vectors and their
approximation by the parametric model. Specifically, the loss function Q is given by:

Q =

N∑
n=1

[ui,n − f(xi,n,θ)]T ·C−1n · [ui,n − f(xi,n,θ)] . (5.5)
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We may rewrite Eq. 5.5 in matrix form as follows. Let H be the coefficient or observa-
tion matrix defined as:

H =


1 (x1)1 (x2)1 (x1)1(x2)1 (x1)

2
1 (x2)

2
1 0T6

0T6 1 (x1)1 (x2)1 (x1)1(x2)1 (x1)
2
1 (x2)

2
1

...
...

...
...

...
...

...
1 (x1)N (x2)N (x1)N (x2)N (x1)

2
N (x2)

2
N 0T6

0T6 1 (x1)N (x2)N (x1)N (x2)N (x1)
2
N (x2)

2
N

 , (5.6)

and let z be the measurement vector defined as:

z =


u1
v1
...
uN
vN

 . (5.7)

Furthermore, letW be the weight matrix with the given 2×2 inverse covariance matrices
along its main diagonal:

W = diag(C−11 , ..,C−1N ). (5.8)

The loss function Q may now be rewritten according to:

Q = (z −Hθ)TW (z −Hθ). (5.9)

Taking the derivative w.r.t. θ , we obtain the sought parameter vector from the normal
equation according to (Mendel 1995):

θ̂ = (HTWH)−1HTWz. (5.10)

5.2.2.1 Computational Complexity

Regarding the computational complexity, TCAM has O(n) complexity in the number of
seed pixels and O(n2) complexity in the size of the accumulator, where the same holds
for the memory consumption. Depending on the computational power available, the
number of seed pixels may be chosen adaptively; put on hold etc. The scheme is easily
parallelised if desired.

5.3 Experiments

In this section, I present experimental results of the proposed method and show its
applicability for several real world sequences. In all experiments, no ground truth was

140



5.3 Experiments

used; all information has been learnt from scratch. Depending on the computational
resources available and the number of seed pixels chosen, the method can operate in
real time. In order to recover dense flow fields, the scheme should be applied within a
multi scale framework; an initial coarse map is then refined, making use of an optimal
accumulator size given by the estimated flow from a previous level. Furthermore, the
scheme may easily be parallelised and thus harness the computational power of massively
parallel architectures such as the GPU. However, for the results presented, I make use
of a baseline implementation without coarse to fine and/or parallel computations.

5.3.1 Learning Average Motion Maps

In the first experiment, I learn sparse and dense average motion maps for sequences
GUCar, Kitti-Odo, GUOmni and Virat. All sequences are converted to greyscale if
needed. Given the event threshold Te, the matching threshold Tm and the window size
wx × wy, the process of event detection and event matching is performed for many
frames (cf. Sec. 3.4). For each seed pixel, I extract the average flow vector observed
as the coordinates of the mean of its associated accumulator. For each learnt flow
vector, a measure of confidence is provided by the accumulator’s covariance matrix (cf.
3.5 for details). For a sparse set of seed pixels, the confidence measure is visualised
as a covariance error ellipse (cf. 3.5). For a dense visualisation, I adopt the usual
optical flow colour coding scheme and apply it to the first and second eigenvector of the
accumulator’s covariance matrix, scaled by the associated eigenvalue. Throughout all
figures, the colour coded flow vectors are normalised to the maximal possible flow (as
given by the accumulator size). Similarly, the confidence maps are normalised as well.
See Sec. 2 and Fig. 2.4 for details regarding the colour coding scheme.

Experiments on GUCar: I set the event threshold to Te = 30 and the matching
threshold to Tm = 10. The accumulator size is set to wx×wy = 40×40 pixels. I select a
regular grid of seed pixels, for which the average optical flow is learnt over 10,000 frames.
Figure 5.1 visualises the obtained sparse flow after 100, 2,500, 5,000 and 10,000 frames
have been processed. Initially, the uncertainty as reflected by the error ellipses is large
and becomes smaller as more frames are processed. The average flow vectors as well as
their associated error ellipses develop a characteristic orientation and size, depending
on the image region. For example, for pixels in front of the engine hood, where the
corresponding 3-D points are close to the camera, the average flow is the largest. For
pixels where the corresponding 3-D point is further away, the corresponding average
flow is smaller. The focus of expansion is clearly visible, approximately in the middle
of the image, in the vicinity of the pixels with minimum average flow vectors.

In order to validate the results obtained for the sparse subset of seed pixels, I also
applied the learning scheme to all pixels. Figure 5.3 shows the dense flow and confidence
maps after having processed 10, 000 frames. The direction and magnitude of each flow
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@ frame 100 @ frame 2,500

@ frame 5,000 @ frame 10,000

Figure 5.1: Sparse flow for GUCar: (within each image) For each seed pixel (red dot) its learnt
average flow (blue vector) and corresponding confidence encoded by means of a (green) covariance
error ellipse is shown. Best viewed in colour and up scaled. See text for details.
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Figure 5.2: Color wheel: Throughout Sec. 5.3.1, this color wheel is used to visualise learnt motion
maps. Best viewed in colour. See text for details.

vector is converted into a hue and saturation value in the HSV colour space, according
to the Middlebury (Baker et al. 2011) standard. The color wheel is shown in Fig. 5.2. It
can be seen that the learnt average flow corresponds to the flow expected for a natural
street scene, where the camera follows a straight path most of the time. The orientation
of the flow vectors in the left half of the map lie within [90◦, 270◦], while in the right
half the orientation lies in [90◦,−90◦]. Note the area where the flow vectors have a low
magnitude (white area). This area corresponds to the average position of the focus of
expansion (D. Ballard and Brown 1982), i.e. where all points seem to emanate. In Fig.
5.3 I also show a colour coded representation of the eigenvectors of the covariance error
ellipses. The orientation of the eigenvectors determines the hue and the corresponding
eigenvalues the saturation in HSV colour space. From these confidence maps, it can be
seen that within the area directly in front of the car, the confidence about the learnt flow
vector is rather low in all directions. This is to be expected, as this area corresponds to
the safety clearance, where most of the time only the homogenous road surface is visible
and only few events are generated. Highest confidences is attained in the upper half of
the image, were most of the events are generated.

Next, I estimate the parameters of the bi-quadratic model introduced in Sec. 5.5.
Figure 5.4 visualises a sparse subset of learnt and interpolated flow vectors, respectively.
The interpolated flow is evaluated at non-seed pixel locations. Comparing the learnt
and interpolated flow vectors, it can be seen that the interpolated flow is more smooth.
While I take covariance information into account when estimating the model parameters,
the approximation is certainly not perfect. For example, it can be seen that the flow
vectors in the upper left and right part are slightly too steep. However, the gist of the
average flow observed by a forward moving platform (and static environment) is clearly
visible. More accurate results should be obtainable by clustering the learnt sparse flow
and learning individual parametric models. However, this remains future work.
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dense average flow map

eigenvector for smaller eigenvalue eigenvector for larger eigenvalue

Figure 5.3: Dense flow and confidence maps for GUCar: (top) Colour coded dense flow map after
10,000 processed frames, (bottom) colour coded eigenvector corresponding to the (left) smaller and
(right) larger eigenvalue of the accumulator’s covariance matrix, respectively. Colour coding according
to the Middlebury (Baker et al. 2011) standard. See text for details. Figure only interpretable when
viewed in colour.
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overlay

learnt sparse flow interpolated sparse flow

Figure 5.4: Interpolated sparse flow for GUCar: Based on a sparse set of flow vectors learnt via
TCA (bottom left) a bi-quadratic parametric model is fitted. The fitted model may then be used to
interpolate the optical flow at non-seed pixel locations as shown in (top) the overlay of interpolated
sparse flow vectors in blue and the same set of interpolated flow vectors w/o background (bottom
right). Note: Flow vectors are scaled by a factor of 2 for visualisation purposes. See text for details.
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Experiments on Kitti-Odo: I select the same parameter setting as for sequence
GUCar (Te = 30, Tm = 10, accumulator size 40× 40 pixels). Again I select a set of seed
pixels laid out in a regular grid.

Figure 5.5 visualises the learnt average flow vectors at initialisation and after 500 and
4,500 frames have been processed. As it is characteristic for TCA, the uncertainty about
the learnt correspondence is large in the early learning stages and becomes smaller the
more events are detected and matched. Similar as for sequence GUCar, the orientation
and magnitude of the learnt flow vectors are characteristic for a camera moving mainly
forward through a (most of the time) static urban environment. The focus of expansion
lies approximately in the middle of the image, as can be seen from average flow vectors
with very small magnitude. As expected, the closer the seed pixels, or rather their cor-
responding 3-D locations, are to the camera, the larger the magnitude of the associated
flow vectors. It is interesting to note that the uncertainty of the flow vectors in the
lower left and lower right part of the image have a considerably larger uncertainty than
the ones in the lower middle and upper left and right part. This is due to rather large
depth and hence motion changes caused by parked and absent cars.

In Fig. 5.6 I visualise a dense flow map and its associated confidence maps after 4,500
frames have been processed. I obtain a similar flow field as for sequence GUCar. This is
to be expected, as in both sequences the camera is moved through an urban street scene.
However, note that the flow map for Kitti-Odo is considerably more noisier which is
due to the rather small number of frames available.

Next, I estimate the parameters of the parametric flow model and show a sparse
set of interpolated flow vectors in Fig. 5.7. We again see that the parametric flow
model is able to capture the gist of the expected flow field, i.e., flow vectors with large
magnitude for those pixel locations where the corresponding (average) 3-D location is
close to the camera. The magnitude decreases towards the focus of expansion, which is
approximately located in the centre of the image.
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@initialization

@frame 500

@frame 4,500

Figure 5.5: Sparse flow for Kitti-Odo: (within each image) For each seed pixel (red dot) its learnt
average flow (blue vector) and corresponding confidence encoded by means of a (green) covariance
error ellipse is shown. Best viewed in colour and up scaled. See text for details.
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dense average flow map

eigenvector for smaller eigenvalue

eigenvector for larger eigenvalue

Figure 5.6: Dense flow and confidence maps for Kitti-Odo: (top) Colour coded dense flow
map after 4,500 processed frames, colour coded eigenvector corresponding to the (middle) smaller
and (bottom) larger eigenvalue of the accumulator’s covariance matrix, respectively. Colour coding
according to the Middlebury (Baker et al. 2011) standard. Figure only interpretable when viewed in
colour.
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learnt sparse flow

interpolated flow

overlay

Figure 5.7: Interpolated sparse flow for Kitti-Odo: Based on a sparse set of flow vectors learnt via
TCA (top) a bi-quadratic parametric model is fitted. The fitted model may then be used to interpolate
the optical flow at non-seed pixel locations as shown in (bottom) the overlay of interpolated sparse
flow vectors in blue and the same set of interpolated flow vectors w/o background (middle). Note:
Flow vectors are scaled by a factor of 1.5 for visualisation purposes. See text for details.
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Experiments on GUOmni: In the experiments presented so far, TCA was applied to
images originating from cameras with standard geometry (≈pinhole). In this experi-
ment, I show that we may learn average flow for cameras with fisheye lenses as well.
Figure 5.8 shows a learnt dense flow map and associated confidence maps for sequence
GUOmni after 10,000 processed frames. Observe how the average flow is clearly different
from the ones presented for standard cameras previously. Objects observed through the
fisheye lens are subject to severe distortions. While the camera is mainly moved forward
through an office environment, the main directions of motion are approximately k · 45
degrees with k being integer valued, as can be seen from the colour coded flow.
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dense average flow map

eigenvector for smaller eigenvalue eigenvector for larger eigenvalue

Figure 5.8: Dense flow and confidence maps for GUOmni: (top) Colour coded dense flow map
after 12000 processed frames, (bottom) colour coded eigenvector corresponding to the (left) smaller
and (right) larger eigenvalue of the accumulator’s covariance matrix, respectively. Colour coding
according to the Middlebury (Baker et al. 2011) standard. Note: The eigenvectors are rescaled for
visualisation purposes. Figure only interpretable when viewed in colour.

151



5 Learning Motion Correspondences

Experiments on Virat: The presented approach may of course be applied to static
cameras as well. Figure 5.9 shows results for sequence Virat, taken from the Virat data
set (Oh et al. 2011). Here, the camera observes a parking lot. The average motion
maps clearly show the typical inbound and outbound traffic paths of the parking lot.
Learning of average motion maps for static cameras is of special interest in surveillance
scenarios, where typical and abnormal behaviour is to be detected.
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dense average flow map

eigenvector for smaller eigenvalue eigenvector for larger eigenvalue

Figure 5.9: Dense flow and confidence maps for Virat: (top) Colour coded dense flow map
after 10,000 processed frames, (bottom) colour coded eigenvector corresponding to the (left) smaller
and (right) larger eigenvalue of the accumulator’s covariance matrix, respectively. Colour coding
according to the Middlebury (Baker et al. 2011) standard. Note: The eigenvectors are rescaled for
visualisation purposes. Figure only interpretable when viewed in colour.
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5.3.2 Interim Conclusion

To summarise, the first set of experiments shows that average motion maps can be learnt
by just looking at the temporal change of single pixels. These maps may subsequently
be used as a prior for other algorithms such as estimating instantaneous motion (optical
flow between two frames) or to detect abnormal object motion in surveillance setups.
Furthermore, the learnt average motion allows to detect non-self-motion, e.g., to identify
other moving objects within the scene as they deviate from the learnt average flow. From
the results for sequences GUCar and Kitti-Odo we may conclude that a moving platform
mainly drives straight ahead, rotational motion due to turning manoeuvres seems to be
averaged out. The question remains how then to learn the average motion observed,
e.g., in a turning manoeuvre? Or more generally, how multiple dominant but different
motions can be learnt? To this end, next, I will show that the accumulator may encode
multiple dominant motion. Then I will present a somewhat more general approach to
learn and represent multiple types of motion based on TCA in combination with a latent
variable model.

5.3.3 Learning Multiple Motions

Within the results presented so far, at each seed pixel a single dominant motion was
expected (forward motion). This raises the questions what the method learns when
multiple dominant motions exist.

Conceptually, the accumulator is not restricted to encode a single dominant motion
only, but may represent multiple motions. As an example, regard Fig. 5.10, where
TCAM is applied to the stream of the first camera of sequence GUBo1616. For two
selected seed pixels, it can be seen that the accumulator captures two dominant motions
which are typically observed at a traffic junction. However, to extract these motion
vectors, the analysis of the accumulator needs to be adapted. Instead of summarising
the accumulator by its first and second order moments, a kind of cluster analysis to
separate the peaks in the accumulator is needed.

It should be noted that the accumulator will only represent multiple dominant mo-
tions, given that they are observed equally often within the regarded scene. If this is
not the case, those motion vectors which are observed less frequently will be averaged
out, due to the same reasons as described in Sec. 5.2.1. Therefore, I propose a latent
variable model, in which different motions are explicitly learnt and represented as shown
next.
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Figure 5.10: Learning multiple motions: An accumulator may encode multiple dominant motions,
here shown for two selected seed pixels. See text for details.

5.4 Motion as a Hidden Variable

So far, we have seen how average motion maps may be learnt via TCA. For a camera
which is mainly moved straight ahead, typical average motion maps such as those shown
for sequences GUCar and Kitti-Odo evolve.

In the following, I will show that TCAM may also learn the characteristic motion
fields observed in left and right turning manoeuvres. Furthermore, I will show that
the same principle of detecting and matching events allows to infer instantaneous (dif-
ferential) image motion as well. Specifically, the yaw (pitch, roll) rate (rotation about
the downward facing Y (X,Z) axis of the camera coordinate system, Z axis towards the
image plane) may be inferred by analysing the correspondence samples, i.e., the sets
Ωxi available within two time steps.

5.4.1 Optical Flow Structure

It is well known that the instantaneous image motion vector (U(x, y),V (x, y))T of a
general rigid 3-D scene can be modelled as (Irani and Anandan 1998; Longuet-Higgins
1984; Longuet-Higgins and Prazdny 1980):(

U(x, y)
V (x, y)

)
=

[ τZx−τX
Z − ωY + ωZy − ωY x2 + ωXxy

τY y−τY
Z + ωX − ωZx− ωY xy + ωXy

2

]
, (5.11)
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where (U(x, y),V (x, y))T denotes the image motion vector at location (x, y), τ{X,Y,Z}
denote translational velocities in direction X,Y or Z, and ω{X,Y,Z} denote the angular
velocities about the three axes, respectively, with x = X/Z and y = Y/Z. From Eq.
5.11 we see that the optical flow at any pixel within the image is a superposition of two
independent flow fields: a flow field which only depends on the translational velocities
and a flow field which only depends on the angular velocities. Consider the case where
the camera pitch and roll rates are zero (or sufficiently small with ωX , ωZ ≈ 0), then
from Eq. 5.11 we obtain:(

U(x, y)
V (x, y)

)
≈
[ τZx−τX

Z − ωY − ωY x2
τY y−τY

Z − ωY xy

]
. (5.12)

Next, assume that for the translational velocities it holds that |τ{X,Y,Z}| � Z, then the
translational velocities will vanish and we obtain:(

U(x, y)
V (x, y)

)
≈
[
−ωY − ωY x2
−ωY xy

]
=

[
−ωY − ωY (XZ )2

−ωY X
Z
Y
Z

]
. (5.13)

From Eq. 5.13 we see that the (scaled) camera yaw rate corresponds to the observed
image motion of pixels where the pixel’s corresponding scene point lies at infinity (or
sufficiently far away from the camera with Z →∞):(

U(x, y)
V (x, y)

)
≈
[
−ωY

0

]
. (5.14)

Similarly, if we assume that the yaw and roll rates are zero, the camera pitch is given
as: (

U(x, y)
V (x, y)

)
≈
[

0
−ωX

]
. (5.15)

Assuming that the yaw and pitch rates are zero, the camera roll is given as:(
U(x, y)
V (x, y)

)
≈
[
ωZ
−ωZ

]
. (5.16)

From these derivations, we see that the yaw rate (pitch/roll) is the same for all pixels,
given that the corresponding scene depth is sufficiently large. Based on this finding, we
may now formulate an inference scheme for the yaw (pitch/roll) rate based on TCA.
For a single seed pixel, recall that we may not learn the instantaneous (between-frame)
motion, as the set of matched events is typically far too noisy. Therefore, matched events
are accumulated over time and form a strong hypothesis for the average flow. This also
implies that we may not infer the current yaw (pitch/roll) rate, based on a single seed
pixel. However, from Eq. 5.15 we see that for all seed pixels with large associated depth
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values, the true correspondence and hence the yaw rate is given by −ωY . Hence we may
accumulate matched events spatially over a set of seed pixels which will result in the
average yaw rate observed. Specifically, I build the mother accumulator as follows. The
mother accumulator is of the same dimensions as the standard accumulator described
in Sec. 2.1. At time t + 1, all entries in the mother accumulator are set to 0. I then
add up all correspondence sample sets Ωxi and build the mother accumulator Am for
time step t+ 1. Given that the yaw rate is the dominant image motion (at the regarded
seed pixels), the mother accumulator will show a distinct maximum at the location of
the true (but typically scaled) yaw differential. Pixels at infinity are those for which
the average flow is small; they can be determined by first learning the average flow map
and the local flow dispersion (see experiments for details). Next, I will present results
of inferring the yaw rate for sequence GUCar.

5.4.2 Learning Hidden Flow Field Variables

As has been explained in Sec. 5.4, if we assume that the yaw rate is the dominant image
motion, then the mother accumulator Am for time step t+ 1 will show a distinct peak,
marking the location of the true (but typically scaled) yaw differential.

I determine a set of pixels, where their corresponding 3-D point will lie approximately
at infinity as follows: I subdivide the image in 4 sectors by two diagonal lines, which pass
through the focus of expansion. The upper sector can well be used for estimation of the
horizontal shift and hence the yaw rate, since the rotational part does not contribute
significantly in vertical direction. Figure 5.11 visualises the selected pixels for some
sample images of sequence GUCar, where the car turns left, goes straight ahead and
turns right. Figure 5.11 also shows the associated mother accumulators. It can be
seen that left and right turns show up as a distinct peak within the accumulator in
the opposite turn direction as expected. To extract the actual yaw rate, I pool the
accumulator (=sum up) vertically to obtain a more robust estimate. When vertical
motion is not the dominant motion, or if only a few number of selected pixels show
an event, the mother accumulator will be scattered, as no strong hypothesis may be
formed by the set of matched events. However, this can easily be detected, e.g. by
an eigenvalue analysis of the accumulator’s covariance matrix. If the accumulator is
scattered, its associated eigenvalues should be large.

I found that left and right turns can be detected with high confidence (by means of
the accumulator statistics as described), given that the analysis is carried out on a suf-
ficiently large number of active pixels, which approximately lie at infinity. Forward and
backward motion of the platform cannot directly be read off the mother accumulator,
as it will be scattered for both types of motion.

While the presented results show that TCA can in principle be used to learn instan-
taneous motion, it remains future work to analyse this approach in more detail.
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5 Learning Motion Correspondences

Figure 5.11: Inferring current yaw rate via TCA: (top left and right) Car turns left, (middle left)
goes straight, (middle right and bottom) and turns right. From pixels within the upper triangle, the
yaw rate between time steps t and t+1 is inferred. At each time step only the pixels showing an event
are taken into consideration, here marked blue (sic!). At each time step a mother accumulator is
build (as shown in the bottom right of each image) by summing up all Ωxi

. The mother accumulator
then encodes the current yaw rate as can be deduced from the peaks in the accumulator array. See
text for details.

158



5.4 Motion as a Hidden Variable

5.4.3 Motion as a Latent Variable

The optical flow observed by a camera mounted on a car depends on the car’s self-motion.
Assuming the car drives through a static scene we may differentiate between three
general types of motion: forward motion, left turn and right turn. As has been shown
previously, for sequences where forward motion (of the camera platform) dominates,
characteristic flow fields evolve which can be learnt via TCA. All other types of motion
are essentially averaged out. In the following, I present a latent variable model based
on which the characteristic motion fields observed in left and right turning manoeuvres
can be learnt as well.

The basic idea is to train separate instances of TCA, one for each motion type (for-
ward, left and right motion). The actual platform motion represents the state of the
ternary hidden variable M = {f, l, r}. In order to train the TCA instances, we need to
infer the state of M which indicates which of the TCA instances is to be updated.

I infer the state ofM between consecutive frames via the method of phase correlation.
To this end, I crop a patch of dimension w × h = 28 × 27 pixels approximately centred
at the focus of expansion at time t − 1 and t , respectively. The translational offset
(4x,4y) (yaw, pitch) between the patches is then estimated in the frequency domain
exploiting the Fourier shift theorem. See (Kuglin and Hines 1975b) and (Eisenbach,
Mertz, et al. 2013) for details. We may inferM also based on the mother accumulator.
However, this remains future work.

Figure 5.12 visualises the relative pose change as estimated via phase correlation for
the case of forward, left and right motion. The blue crosshair marks the image centre,
while the red crosshair is moved according to the estimated motion. The TCA instance
to be updated is then selected based on thresholding the estimated offset in x direction
(4x = yaw rate): 

4x < −5 update right turn model,

|4x| ≤ 5 update forward motion model,

4x > 5 update left turn model.

(5.17)

Next, I apply TCA with parameter setting: Te = 30, Tm = 10, accumulator size 40× 40
pixels for the forward motion model and accumulator size 90 × 90 pixels for left and
right turns. The spatial extend of the accumulators for the left and right turn need to
be larger than those for the forward motion, as the observed optical flow is considerably
larger. This is due to building walls which are very close to the camera during turning
manoeuvres.

Figure 5.14 visualises the learnt sparse flow for a right turn. From the orientation of
the learnt flow vectors, it can be seen that all of them capture a displacement to the
left as expected. Figure 5.14 also shows the interpolated flow which clearly represents
the characteristic flow field for a right turn. Figure 5.13 visualises the results obtained
for a left turn. From these, we may draw similar conclusions as for the right turn.
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5 Learning Motion Correspondences

Figure 5.12: Motion as a latent variable : The optical flow observed by a camera mounted on a car
depends on the car’s self motion. Assuming the car drives through a static scene we may differentiate
between three general types of motion: (top) forward motion, (middle) left turn, (bottom) right turn.
We may then learn the associated average optical flow by training three independent TCA instances.
The solid blue lines mark the image centre while the dashed red lines mark the lateral motion (=yaw
rate) between consecutive time steps. The lateral motion is here estimated via the method of phase
correlation and is used to select the TCA instance. See text for details.
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Figure 5.13: Learnt and interpolated sparse flow for Kitti-Odo (left turn): The TCA model is
only updated, when the motion variable M indicates a left turn. Best viewed in colour. See text for
details.
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Figure 5.14: Learnt and interpolated sparse flow for Kitti-Odo (right turn): The TCA model
is updated, when the motion variable M indicates a right turn. Best viewed in colour. See text for
details.
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5.5 Summary and Conclusion

5.5 Summary and Conclusion

I presented the applicability of TCA to motion analysis. Experimental results show
that the method is able to successfully learn the distribution of motion correspondences
unsupervised without explicitly computing the optical flow.

I showed that a sparse set of learnt average motion vectors can be interpolated by
means of fitting the parameters of a bi-quadratic model to the set of learnt average
motion vectors. The scheme takes the uncertainties encoded in the learnt correspondence
distribution explicitly into account.

I demonstrated that TCA can also be used to perform inference on global hidden
motion variables, e.g., the yaw rate, by pooling the set of matched events over many
pixels lying approximately at infinity.

The approach can be applied to static and moving cameras and can handle different
camera models in a principled manner.

Based on a mixture model of TCA experts, I demonstrated that the three dominant
types of motion observed by a moving camera in a natural environment, i.e., left, right
and forward motion can be learnt autonomously. This leads to three characteristic
average motion fields.
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Learning Global Transformations
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6 Learning Global Mappings

In the following, I develop and analyse a method to learn global transformations be-
tween pairs of views in an unsupervised manner. This is in contrast to TCA described
previously, where correspondences were learnt on a per pixel basis.

My approach is based on a linear model known as Canonical Correlation Analysis
(CCA) (Hotelling 1936). Given a large set of training image pairs, which are related
by an unknown (=latent) spatial transformation, I learn this transformation in a fea-
ture free (=no keypoint detection or matching) manner. The learnt transformation is
represented implicitly in terms of pairs of learnt basis vectors and does neither use nor
require an analytic/parametric expression for the latent mapping.

It is important to note that this work is not about estimating the parameters of a
known class of transformations but about learning the transformation itself.

6.1 Introduction

Let us now regard the problem of learning global spatial transformations between pairs
of images, which I denote as mappings in the following.

In its most general form, for two images Ii and Ij the mapping function describes the
pixel to pixel mapping yj = f(xi), where xi and yj are the spatial 2-D coordinates of
corresponding pixels in images Ii and Ij , respectively. Inferring the mapping function
f is the fundamental problem in many vision tasks, e.g., in stereo vision or motion
estimation (Stiller and Konrad 1999). In Sec. 2, we have seen that we may sample the
mapping function f by the detection and matching of spatial keypoints. This leads to
sparse or dense sample sets, e.g., by means of a disparity map or an optical flow map
(cf. Sec. 2.2). However, due to the potential complexity of natural scenes, inferring a
fully functional description of the mapping function is usually infeasible. Instead, the
true mapping is approximated by fitting a specific parametric model. Fitting of these
models may be done in a number of different ways. A common approach to determine a
geometric mapping for a pair of images is based on the spatial feature matching pipeline
(cf. Sec. 2) by fitting the parametric model to a set of pixel correspondences.

In computer vision, a prominent parametric model is the projective linear group, which
defines 2-D planar transformations (Hartley and Zisserman 2004). Let xi be the 2-D

pixel coordinate of a pixel in camera Ci and let x̃i =
(
x1 x2 w

)T
i

be its homogeneous
representation. In the following we assume w = 1. The projective transformation
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similarity

Euclidean affine

projective

translation

Figure 6.1: 2-D spatial transformations: Overview of 2-D spatial transformations which can be
modelled via H. See text for details. Image source: (Szeliski 2010, p. 36).

linearly maps coordinates x̃i to coordinates ỹj in Cj such that x̃i ↔ ỹj holds according
to (ibid., p. 33):

ỹj =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 x̃i = Hx̃i. (6.1)

Here, H is an arbitrary non-singular matrix, also denoted as homography. By constrain-
ing the structure ofH, i.e., reducing its number of free parameters, we obtain affine, sim-
ilarity, euclidean, and translation transformations (cf. Fig. 6.1). Inferring an unknown
projective transformation then amounts to estimate the parameters θ = {h11, .., h33}.
While the homography has 9 parameters, in its most general form it only has 8 degrees
of freedom due to the fact that a projective transformation is only uniquely defined up
to a scale factor (ibid.).

Now assume that for a set of P correspondences {x̃i ↔ ỹj}P fulfilling Eq. 6.1 the
transformation H is sought. For each pixel correspondence (in homogeneous coordi-
nates) we have (ibid., p. 88):

ỹj ×Hx̃i = 0. (6.2)

Carrying out the cross product in Eq. 6.2 (assuming w = 1) and rearranging, we may
rewrite Eq. 6.2 for the p’th correspondence as (ibid., p. 89): 0T3 −x̃Ti (y2)jx̃

T
i

x̃Ti 0T3 −(y1)jx̃
T
i

−(y2)jx̃
T
i (y1)jx̃

T
i 0T3

h1

h2

h3

 = 0 = Aph, (6.3)
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where h{1,2,3} denote the rows of H (as a column vector), which when concatenated
form column vector h. In Eq. 6.3 only two rows of Ap are linearly independent. If we
stack Ap for all correspondences we arrive at the homogeneous equation system:


A1

A2
...
AP

h = Ah = 0. (6.4)

Similar to the estimation of the fundamental matrix (cf. Sec. 2.2), Eq. 6.4 may be solved
(in a least squares sense) via the singular value decomposition of A. This method is
also known as the direct linear transform algorithm in the literature (ibid.).

Let us now return to the problem of inferring an unknown mapping between two
views Ci and Cj . If a parametrised functional representation in the form of H is sought,
we may identify a set of pixel correspondences among the views and then solve for the
parameters of the functional form. Obviously, prior to infer the parameters, we need to
select a specific functional form (affine, similarity...) or have to infer it as well, via a
model selection approach.

In contrast, I consider learning of global spatial transformations between pairs of
views in a feature free, non-parametric and unsupervised manner. In my approach, I
never compute spatial features and I make no assumption about the functional form of
the underlying mapping. Furthermore, I do not rely on a topological relation between
the pixel signals which is implicitly done when estimating H. It is important to note
that I consider learning of arbitrary but fixed transformations, i.e., the transformation
is assumed to be the same over a large set of training images. This is not the case for
the parametric approach described earlier, where a single image pair suffices to estimate
the parameters of the mapping function. However, also note that this work is not about
estimating the parameters of a known class of transformations but about learning the
transformation itself.

6.1.1 Mapping as a Linear Projection

The fundamental difference to the common functional/geometrical representation of a
spatial mapping function is that I represent the mapping by means of a linear projection.
From now on, instead of corresponding pixels, I will regard corresponding images or
patches. I will now let xi,yj ∈ RR·C , with xi ↔ yj being a corresponding pair of
vectorised images (=2-D array rearranged to a column vector), and not single pixels as
in the first part of the thesis. In order to keep the notation uncluttered, I usually drop
indices i and j and x will always denote an image of view Ci and y will always denote
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6.1 Introduction

an image of view Cj . Let F ∈ RR·C×N be a matrix of N basis vectors. I then define the
mapping of x to y (and vice versa) according to:

y = F T
yxx, (6.5)

x = F T
xyy. (6.6)

While applying a mapping via Eq. 6.6 is a linear operation, it is important to note that
the actual spatial transformation encoded by Fyx does not need to be linear. Figure 6.2
visualises the general difference between the geometric and the tensor based approach
to apply a spatial transformation.

The approach developed in the following estimates Fyx and Fxy, based on the method
of Canonical Correlation Analysis (CCA), which was introduced by Hotelling in 1936
(Hotelling 1936) (cf. Fig. 6.3). I found that CCA is capable of learning general,
even non-parametric, transformations of visual data. Specifically, given a large set
of pairs of training images, the mappings Fyx and Fxy are learnt and encoded by
means of two sets of basis vectors, which are obtained via CCA. Recall that I consider
learning of arbitrary but fixed transformations, i.e., the transformation is assumed to
be the same over the whole training set. While CCA may be applied to a dataset
containing a whole class of transformations, the learnt basis vectors will then constitute
an invariant representation of the data under the transformations observed. This has
been shown in (Bethge et al. 2007), where a rotation invariant representation for 2-D
images is learnt with a variant of CCA. As expected, CCA then learns eigenfunctions
of the rotation operator. My approach differs from (ibid.) as my goal is to learn and
apply an unknown transformation. When learning an invariant basis for a class of
transforms, the knowledge about the particular transformation at hand is lost in the
CCA model. This is due to the fact that CCA does not have additional hidden variables
to ’switch’ between the different transforms, hence we may not predict the outcome of
this specific transformation to new data. Restricting the training data to contain a single
transformation, as I do here, could be considered a limitation in practice; however, it
reveals a fundamental mechanism that applies when the transform parameters are kept
fixed. To represent a parameterised set of transformations, a suitable mixture model is
needed which allows to switch between different CCA ’experts’. In Sec. 6.7 , I will give
a preliminary example for such a mixture model. However, general learning of multiple
transformations via CCA is considered future work.

As will be shown in Sec. 6.5, CCA extracts features (basis vectors) that capture
the hidden transformation and generates a linear mapping tensor that allows to apply
a learnt transformation to previously unseen data. This task is sometimes denoted
as ’analogy making’ in the literature (Memisevic and Hinton 2010). From the CCA
representation, the rank of the shared signal, i.e., the part of the signal visible within
both views may be determined and an analysis of the energy distribution among the
basis vectors allows to identify the spatial footprint of the shared signal.
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Figure 6.3: Learning hidden transformations: I am interested in learning spatial transformations
between pairs of views. Transformations considered here are general nonlinear, non-parametric trans-
formations. Learning is based on Canonical Correlation Analysis applied to a large training set of
image pairs, which were subject to an arbitrary but fixed transformation. See text for details.

In Sec. 6.6.2.1 I will show that the basic learning scheme may also be used to gen-
erate correspondence priors for binocular camera setups. Specifically, I determine a
global mapping on a coarse scale of the given video streams of cameras Ci and Cj . I then
determine pixel correspondences on a coarse scale, via learning the inter-image transfor-
mation, employing CCA. Subsequently, I project those correspondences to the original
resolution and obtain a correspondence prior: for each spatial location in the spatial
domain of Ci, regions of high probability containing the true correspondence within Cj
are determined. Such correspondence priors may then be plugged into probabilistic and
energy based formulations of specific vision applications.

6.2 Related Work

Canonical Correlation Analysis is a well-established statistical method to model/infer
the relationship between paired data (rather than modelling the content of a single
source, like, e.g., PCA does). CCA has been used in quite different disciplines, among
them economics, statistical signal processing and climatology (Barnett and Preisendorfer
1987; Scharf and Mullis 2000).

Applications in computer vision range from depth estimation (Borga and Knutsson
1999) to image and action classification (T.-K. Kim et al. 2007; T. Kim et al. 2007).
Although there is interesting vision-related work based on CCA, CCA as a tool seems
to be familiar to a part of the vision community only. In (Borga and Knutsson 1999),
Borga and Knutsson combine the phase-based approach to disparity estimation with
CCA to estimate depth maps in semi-transparent stereo images. Specifically, CCA is
used to generate adaptive linear combinations of quadrature filters in order to be able
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to estimate multiple disparities at a given image location, which would not be possible
when using a standard phase-based approach alone. Furthermore, Borga (Borga 1998)
presented the relationships of CCA and PCA (including other linear models) showing
that their solutions are given by solving a generalised eigenvalue problem. In (Johansson
et al. 2001), a corner orientation detector based on CCA is developed, which is invariant
to the actual corner angle and intensity. In (T.-K. Kim et al. 2007; T. Kim et al. 2007),
CCA is applied in high level applications like image and action classification. Specifically,
a similarity measure based on CCA is derived and used within a discriminative learning
framework.

In (Loy et al. 2009), a framework based on CCA is developed, which addresses tasks
like activity modelling or finding the spatiotemporal topology within multi-camera net-
works. While I share a similar application domain, the fundamental difference to my
approach is that they try to identify corresponding regions among non-overlapping cam-
eras that show similar activity.

In (Donner et al. 2006), an active appearance model search algorithm based on CCA
is proposed, where object characteristics are learnt and subsequently used for search.
In (Kobayashi 2014), a regularised variant of CCA is developed and is used in a partial
pattern matching application. Specifically, the optimisation problem addressed by CCA
is constrained by i) a smoothness and ii) a sparseness constraint. Results show that
the constraints help in identifying shared partial patterns within two views. However,
the smoothness constraint introduces a topological assumption on the input data which
does not need to be made when using classic CCA (hence, general permutations can be
learnt).

In the machine learning community, CCA is used in labelling and dimensionality
reduction tasks, to name a few (Dhillon et al. 2011; Lampert and Krömer 2010; Rai
and Daumé 2009). In (Bach and Jordan 2005), a probabilistic interpretation of CCA
(PCCA) is presented. However, note that also the classic formulation of CCA is based
on a statistical signal model. This has been extensively studied by Scharf and colleagues
in their work on CCA in the signal detection and estimation community (A. Pezeshki
et al. 2006; Scharf and Mullis 2000; Scharf and John Thomas 1998). However, their
work seems to be less known in the computer vision and machine learning community.

Variants and extensions of classic CCA include kernel CCA (Fyfe and Pei Ling Lai
2000; Hardoon et al. 2004; Pei Ling. Lai and Fyfe 2000; C. Wang 2007) and recently deep
CCA (Andrew et al. 2013). In (Klami et al. 2013), a Bayesian interpretation of CCA is
given and shown to be equivalent to a model known as inter-battery factor analysis.

In this work, I will stick to the classic statistical formulation of CCA and present an
analysis of how the shared signal among pairs of views is represented by CCA and how
a learnt transformation can be applied in a statistically optimal way by means of an
associated MMSE estimator, in analogy to (Scharf and Mullis 2000; Scharf and John
Thomas 1998).
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My work can be considered as a relational feature learning approach, where the goal is to
extract features which model the relationship of the paired data, rather than modelling
their content. This type of feature learning has found attention both in the area of com-
putational neuroscience and in the machine learning/machine vision communities (see
(Memisevic 2013) for a recent overview). Recent models include the Gated Boltzmann
Machine (Memisevic and Hinton 2007) and the Gated Autoencoder (Memisevic 2008),
which mainly differ by means of the score function which is optimised. In these types
of models, relational features are represented by means of filters/basis vectors obtained,
e.g., by maximum likelihood training via contrastive divergence on a rather large set
of training images. Once trained, the transformation of a given image pair is encoded
by means of the activation of (binary) hidden variables, which select a sparse subset
of the learnt filters to represent the observed transformation. It is important to note
that these models are able to learn and represent a manifold of transformations at the
same time. For example, by training a classifier on the activation pattern of the hidden
variables, it is possible to distinguish between, say, different rotations, as the activation
pattern of the hidden variables will differ. Compared to this, the CCA approach is less
powerful when it comes to learn multiple transformations at the same time. However,
the processing structure is much simpler and merely amounts to perform a singular
value decomposition, compared to rather sophisticated iterative optimisation schemes
of the previously mentioned models.

To summarise, the tasks addressed in the following are learning a representation of a
fixed unknown geometric mapping between images x and y from a rather large training
set, which allows to predict x from y and vice versa. The mapping may be arbitrary
complicated, even non-parametric, and not necessarily one-to-one. Furthermore, I iden-
tify the area which is ’seen’ by both images, which may be inferred based on the rank
of the shared signal.

6.3 Learning Transformations with CCA

6.3.1 Observation Model

I regard pairs of vectorised images x,y ∈ RR·C , which are arbitrarily transformed ob-
servations of a vectorised source signal s, corrupted by additive zero mean Gaussian
noise, represented by vectors vx and vy. The observation model is then:

x = φ(s) + vx, (6.7)

y = θ(s) + vy. (6.8)

174



6.3 Learning Transformations with CCA

Figure 6.4: Observation model: (left) An image pair x,y is given as two partially overlapping
observations of a source signal s. In the present illustration, the geometrical pixel-to-pixel relation is
depicted as a simple spatial shift, but the model is valid for any geometrical transformation. (right)
Definition of the ’shared signal’ (textured), which represents the part of the source signal which is
visible within both observations.

Note that φ and θ are not the transformations I want to learn. Instead, I am interested
in learning the transformations Fxy,Fyx ∈ RR·C×N which map x to y and vice versa,
according to:

x̂ =

 | | | |
f1
xy f2

xy . . . fNxy
| | | |

T y = F T
xyy, (6.9)

ŷ =

 | | | |
f1
yx f2

yx . . . fNyx
| | | |

T x = F T
yxx. (6.10)

Recall that the mapping functions Fyx and Fxy are to be understood as a set of basis
vectors which are linear functions of the pixel’s signal values. Therefore, the mapping
functions Fyx and Fxy are not identical to the parametric geometrical transformation
that maps coordinates (locations) in one image to coordinates in the other image. Util-
ising this formulation for transformations allows to represent simple transformations
like shifts and rotations, but can also deal with arbitrarily complex nonlinear mappings,
including a complete random permutation of the pixel locations.

I define the shared signals zy|x and zx|y, which are the parts of the source signal
visible within both images, given by:

zx|y = x ∩ F T
xyy, (6.11)

zy|x = y ∩ F T
yxx, (6.12)

where operator ∩ extracts the common part of two given signals. Figure 6.4 illustrates
the observation model and the shared signal for a translation transformation in both
spatial directions. Observe that for a translation, the shared signal cannot be of full
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rank, i.e., there are parts within x which are not visible within y and vice versa. In
general, the shared signal will only be of full rank, given that the transformation is a
full permutation, which is an invertible transformation by definition.

The idea to learn the transformations Fyx and Fxy is now the following: The true
(hidden) transformations F T

xyy and F T
yxx should maximise the correlation of the shared

signals Corr(zy|x, zx|y) among all possible transformations. In the following, I show that
the latent mappings Fyx and Fxy may be obtained as an MMSE estimator, which is
defined based on two sets of basis vectors obtained by CCA.

6.3.2 Canonical Correlation Analysis

Next, I will give a brief overview of CCA. For a thorough introduction see (Mardia et al.
1980).

Let x ∈ RL and y ∈ RP be two random vectors. CCA determines a separate set
of basis vectors (=filters) for each random vector, such that the correlations between
x and y, when projected onto the basis vectors are mutually maximised (ibid.). For a
single pair of basis vectors u and v, the projections are given as:

a = uTx, (6.13)

b = vTy. (6.14)

Using the above definitions and assuming E [x] = E [y] = 0, the (Pearson) correlation ρ
between a and b can be written as:

ρ(a, b) =
E [ab]√

E [aa]E [bb]
,

=
E
[
(uTx)(vTy)

]√
E [(uTx)(uTx)]E [(vTy)(vTy)]

,

=
E
[
(uTx)(yTv)

]√
E [(uTx)(xTu)]E [(vTy)(yTv)]

,

=
uTE

[
xyT

]
v√

uTE [xxT ]uvTE [yyT ]v
,

=
uTCxy v√

uTCxx uvTCyy v
, (6.15)

where C•• are the respective covariance matrices and u and v are the sought unknown
basis vectors maximising the correlation. Note that Eq. 6.15 does not depend on the
actual scaling of u or v. Therefore, the optimisation problem addressed by CCA can
formally be defined as:

max
u,v

uTCxy v s.t. uTCxx u = vTCyy v = 1. (6.16)
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6.3 Learning Transformations with CCA

Following the derivations of (Anderson 1958) (or similarly (Borga 1998)) the constrained
optimisation problem from Eq. (6.16) can be written as the following Lagrangian:

F (u,v;λu, λv) = uTCxy v − λu(uTCxx u− 1)− λv(vTCyy v − 1), (6.17)

with λx and λy being the Lagrange multipliers. From the partial derivatives of Eq. 6.17
with respect to u and v, we see that λu = λv = λ and finally obtain:

C−1xxCxyC
−1
yyCyxu = λ2u, (6.18)

and

C−1yyCyxC
−1
xxCxyv = λ2v. (6.19)

Equations 6.18 and 6.19 define a generalised eigenvalue problem. The pair of basis
vectors corresponding to the largest eigenvalue maximises the (canonical) correlation
of the projected data. With each of the remaining eigenvalues, a pair of basis vectors
is associated, such that bases U ∈ RK×R and V ∈ RK×R with K = min(L,P ) and
R = min(rank(x), rank(y)) are obtained, which contain one basis vector per column.
In the following, I assume that the input signals are of full rank such that K = R.
However, depending on the transformation, the shared signal will in general not be of
full rank. It can be shown (Mardia et al. 1980) that the projections ak = uTk x and
bk = vTk y are uncorrelated which implies that uTi Cxxuj = 0 and vTi Cyyvj = 0 for i 6= j.

In practice, CCA may be applied via the SVD. Here, I adopt the CCA formulation
from (Scharf and Mullis 2000) which is given as follows. Random vectors x and y are
represented in canonical coordinates a and b according to:[

a
b

]
=

[
FT 0
0 GT

] [
C
−1/2
xx 0

0 C
−1/2
yy

] [
x
y

]
, (6.20)

with a, b ∈ RK , i.e., a and b are the coefficients of the CCA basis vectors, obtained
by projecting the original data. The canonical correlations are then given as the main
diagonal of the covariance matrix Cab of the projections a and b, which is a diagonal
matrix by definition (Mardia et al. 1980). In Eq. 6.20, first a whitening transform

is applied to x and y, based on the whitening matrices C
−1/2
xx and C

−1/2
yy . Next, the

whitened vectors are transformed with orthogonal matrices F and G to obtain their
canonical form. Matrices F and G are given by the SVD of the so called coherence

matrix C = C
−1/2
xx CxyC

−T/2
yy , such that:

svd(C) = FKGT . (6.21)

Here, matrix K is the (diagonal) canonical correlation matrix with:

K = E{abT } = Cab = FTCG. (6.22)
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Bases U and V are given as:

U = C−T/2xx F, (6.23)

V = C−T/2yy G. (6.24)

The canonical correlations measure the correlations of the canonical coordinates and
thus the cosine of the angle between coordinates a(i) and b(i) (Scharf and Mullis 2000).

CCA can also be performed via QR decomposition or SVD of both data matrices
without having to estimate covariance matrices from data (see (Anderson 1958; Mardia
et al. 1980) for detailed derivations). Canonical coordinates may also be extracted in
a recursive manner, as shown in (Ali Pezeshki et al. 2003), where a neural network
implementation of CCA is presented.

6.4 Application of CCA to Transformation Learning

As we have seen, the objective of CCA is to determine sets of basis vectors U and
V , which I denote as latent mappings. The correlation of the paired data is then
maximised in the latent space, i.e., when projected onto the CCA bases. Intuitively,
the correlation in the latent space is maximised when the transformation between x
and y has been compensated perfectly such that x and y appear to be (approximately)
identical. Therefore, the CCA basis vectors have to represent the mapping from x to y
and vice versa. Inferring x from y, i.e., to apply the learnt transformation on x, then
amounts to project x into the latent space via UTx and to apply the inverse mapping
of V to obtain an estimate of y.

It turns out that the minimum mean-squared error estimator of x from y (and vice
versa) in canonical coordinates is given by (Scharf and Mullis 2000; Scharf and John
Thomas 1998):

x̂ = F T
xyy = C1/2

xx FKGTC−1/2yy y, (6.25)

ŷ = F T
yxx = C1/2

yy GKFTC−1/2xx x. (6.26)

Note that the canonical correlations K in Eq. 6.25 and Eq. 6.26 are weighting each basis
vector and are a measure of the importance of the basis vector to explain the hidden
transformation. Assume that both input images are of full rank, such that rank{x} =
rank{y} = K. As has been explained previously, depending on the latent mapping, the
shared signal will in general not be of full rank and we have rank{zy|x}, rank{zx|y} ≤
rank{x} = rank{y}. The rank of the shared signal is therefore given as the rank of the
canonical correlation matrix K.

In practice, we obtain the bases U and V by applying CCA to a large set of training
images (see Sec. 6.5 for details). A learnt transformation may then be applied to
previously unseen data via Eq. 6.25 and Eq. 6.26.
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6.5 Learning Global Transformations on Natural Images

In the following, I present results for learning various transformations based on the
proposed approach. Prior learning a transformation, we need to set up data matrices
X and Y. The i-th columns X:,i and Y:,i are assumed to be generated according to the
observation model in Eqs. 6.7 and 6.8, and are assumed to be related via the hidden
mappings Fxy and Fyx according to Eq. 6.9 and Eq. 6.10. To setup the data matrices,
we obviously have to identify corresponding image pairs. This could be done by first
learning pixel-to-pixel correspondences and then to crop patches centred on the pixel
correspondences. However, in the following I will generate corresponding image pairs
manually. Specifically, I learn transformations on patch pairs, cropped from natural
images of the Berkeley Segmentation Database (BSD300) (Martin et al. 2001) which
consists of 300 natural images. For a specific transformation, I generate a training set as
follows: The first view is generated by randomly selecting G square patches of dimension
2D × 2D out of the pool of natural images. Then, I apply the transformation to each
patch, which generates the second view. Finally, the centre part of dimension D × D
of both patches will be cropped and used as a training example. This guarantees that
both patches are completely covered by a part of a natural image, such that the training
data has full rank. I discard patches where the signal variance is small (=homogeneous
areas). Finally, I obtain data matrices X,Y ∈ RD·D×G which contain training views
column wise. Note that for each data set, the transformation is held fixed. Throughout
the experiments for each training set, I generate G = 10, 000 square patches of size
D ×D = 21× 21 pixels.

The classes of transformations considered here are:

• translation in x direction by dx pixels,

• translation in y direction by dy pixels,

• in plane rotation by α degrees,

• scaling by factor γ,

• general nonlinear transformations,

• random permutations,

• combinations of these.

After the data matrices have been generated, I add i.i.d. zero-mean Gaussian noise with
standard deviation σ separately to every image in order to simulate observation noise.
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6 Learning Global Mappings

6.5.1 CCA Basis Vectors

Let us now visually inspect the bases U and V, which we obtain when applying CCA
to the training data. To this end, I reshape the basis vectors and visualise them as 2-D
images. Each basis vector is independently rescaled to the interval [0, 1]. Note that I
rescale the basis vectors only for reasons of a better visualisation.

As the training images are of dimensions D×D = 21× 21 pixels (and assuming that
the input data is of full rank), CCA will return 441 basis vectors for the first view and
the second view, respectively. For reasons of clarity, I will only visualise the first 25
pairs of basis vectors for each learnt transformation.

We will first regard a rotation transformation by α = 90 degrees and the influence
of the observation noise on the obtained basis vectors. Figure 6.5 visualises the basis
vectors for four different noise standard deviations, i.e., for σ ∈ [0, 1, 4, 10]. While we
never expect to observe noise free data in practice, it is still interesting to see how CCA
represents the transformation, compared to the noise afflicted data. In the noise free
case, the basis vectors tend to develop a localised structure around a single pixel or a
small pixel subset. If noise is added to the training data, the basis vectors develop a
low-pass like characteristic. The 90 degree rotation is clearly reflected within each pair
of basis vectors; each pair of basis vectors is related by a 90 degree rotation. While we
may distinguish between the noise free and noise afflicted case only by visual inspection,
the learnt basis vectors for the different noise levels appear very similar. Note that the
filters may have an opposite polarity (black areas become white and vice versa) but still
represent the same basis vector in terms of direction. Next, let us inspect the influence
of the amount of training data on the learnt basis vectors.

Figure 6.6 visualises the basis vectors obtained for training set sizes of 500, 2,500,
5,000 and 10,000 image pairs with a fixed noise level σ = 1. For 500 images, the basis
vectors seem to be of a random structure, which lets us conclude that the basis vectors
do not capture the transformation. For 2,500 image pairs, the basis vectors develop
the expected low pass characteristic but appear to be noisy. The basis vectors become
smoother for 5,000 images and 10,000 image pairs. From a theoretical point of view,
the required minimum number of linearly independent training pairs is given by the
dimensions of the input data. However, for a practical application, we conclude that
the amount of training data should be a multiple of this theoretical lower limit in order
to attenuate the influence of data noise on the basis vectors.

For other transformations, we basically see the same influence of observation noise
and sample size on the learnt basis vectors, as was shown for the 90 degree rotation. In
the following, I will therefore only present results for a fixed observation noise of σ = 1
and 10,000 training image pairs.

Figure 6.7 visualises learnt basis vectors for translations in x and y direction, rotations
and for a combination of these transformations. Again, the basis vectors tend to develop
a low-pass like structure, and each pair of basis vectors is related by the respective
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6.5 Learning Global Transformations on Natural Images

transformation. In contrast to the 90 degree rotation, a translation transformation will
always lead to shared signals zy|x and zx|y which cannot be of full rank. Obviously, this
is due to the fact that for a translation, there are signal parts in the right view, which
are not visible in the left view and vice versa. This is also the case for rotations, when
the rotation angle is not an integer multiple of π

2 . The fact that the shared signal is
not of full rank can also be seen from the learnt basis vectors. The filters contain areas
in which the filters are inactive, i.e., the filter weights are close to 0 (greyish colour in
the plots). This is due to the fact that none of the transformations in Fig. 6.7 is a full
permutation and can thus not be inverted.

Based on the results presented so far, we conclude that basis vectors obtained by
CCA are able to differentiate between shared and non-shared signal parts by means of
non-zero and close to zero filter values. I will further discuss this in Sec. 6.5.3.

Figure 6.8 visualises the basis vectors for a vertical split, a mirror, a quarter split and
a random permutation transformation. Similar as for the previously regarded linear
transformations, the CCA basis vectors clearly reflect the respective transformation.
As all transformations are full permutations, each pixel in the left view has a unique
corresponding pixel in the right view. Hence, the shared signals are of full rank and
the basis vectors cover the whole spatial extend. The basis vectors obtained for the
random permutation are particularly interesting: While the filters for all transformations
regarded so far developed a low-pass characteristic, this is only the case for the basis
vectors of the left view.

So far, we have only regarded linear transformations of the input data. Recall that
the process of projecting data onto the CCA basis is a linear operation. However, the
basis vectors may represent arbitrary nonlinear transformations. Next, let us inspect
the basis vectors obtained, when CCA is applied to image pairs that are related by a
nonlinear transformation. Figure 6.9 visualises basis vectors for four more nonlinear
transformations; a ’foveated’ transformation represented by a nonlinear radially sym-
metric scaling, scaling by a factor of 2, and a nonlinear (quadratic) scaling in x direction.
For the first three transformations, the shared signal zy|x is of full rank. Therefore, the
basis vectors of the left view cover the whole spatial extend. However, the shared signal
zx|y is not of full rank. Hence, the basis vectors of the right view contain close to 0
values.

So far, we have seen that CCA represents a hidden transformation by means of low-
pass like basis vectors. Besides linear (affine) transformations, CCA also seems to be
able to extract nonlinear transformations of the input data. While these findings are
solely based on a visual inspection of the basis vectors, next, I will analyse the behaviour
of the canonical correlations and show that these indicate the rank of the shared signal.
While we may easily infer the shared signal by visual inspection of the basis vectors,
there is no direct way to actually compute the shared dimensions. In order to infer the
coordinates of the shared dimensions, I will regard the summed energy filters in Sec.
6.5.3.
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6 Learning Global Mappings

translation by dx = 5 pixels translation by dy = 7 pixels

translation by dx = 3 and dy = 5 pixels rotation by α = 37 degrees

rotation by α = 217 degrees rotation by α = 37 degrees and translation by dx = 8 pixels

Figure 6.7: Learning affine transformations: CCA basis vectors obtained when the hidden trans-
formation is a translation and/or rotation transformation. See text for details.
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6.5 Learning Global Transformations on Natural Images

6.5.2 Behaviour of the Canonical Correlations

Let us now regard the canonical correlations, which are associated with each pair of
basis vectors. Recall that the canonical correlation associated with the i-th pair of basis
vectors represents the empirical correlation of the input data, when projected onto the
i-th pair of basis vectors given by Corr(UT

i x,V
T
i y). I expect the canonical correlations

to be large, when the pair of basis vectors represent a shared dimension. Likewise, I
expect the canonical correlations to be small, when the pair of basis vectors represent
a non-shared dimension. Therefore, I expect the canonical correlations to indicate the
rank of the shared signal.

In the following, I will analyse the canonical correlations for the transformations
presented in Sec. 6.5.1. As the training data is of dimension 21 × 21 = 441, there are
441 canonical correlations assuming that the training data is of full rank. In order to
study the influence of observation noise on the canonical correlations, I will vary the
noise level within σ = [0, 1, 2, 4, 6, 9].

Let us now regard the canonical correlations for a rotation transformation by α = 90
degrees, which are visualised in Fig. 6.10 (top left). In the noise free case, all correlations
are 1. This is to be expected, as the 90 degree rotation constitutes a full permutation, i.e.,
each pixel in the left view has a unique corresponding pixel in the right view and CCA is
able to learn basis vectors which perfectly align the input data. When noise is added to
the training data, the correlations decline nonlinearly. The more noise is added to the
training data, the steeper the descent is. Let us now compare the correlations of the 90
degree rotation to a transformation where the shared signal is not of full rank. Figure
6.10 (top right) visualises the canonical correlations for a translation transformation by
dx = 5 pixels. For this transformation, the number of shared dimensions is bounded by
(D ·D)− (dx ·D) = 441− 5 · 21 = 336. For the noise free case, the correlations are one
for the shared dimensions and drop abruptly for the first non-shared dimension. Then,
for the non-shared dimensions, the correlations decline linearly. When noise is added
to the training data, the correlations decline nonlinearly for the shared dimensions and
again linearly for the non-shared dimensions, where the inflection point of the curve
marks the true rank of the shared signal. Furthermore, it is interesting to note that the
slower the correlations decline in the shared dimensions, the faster they decline in the
non-shared dimensions. When we compare these results to the 90 degree rotation, we
see that the qualitative course of the correlations is very similar, when regarding only
the shared dimensions.

For the remaining plots in Fig. 6.10, we basically see the same behaviour of the
correlations for shared and non-shared dimensions; the canonical correlations decline
nonlinearly in shared dimensions and linearly in non-shared dimensions.

We may ask why the correlations for non-shared dimensions do not vanish. Recall
that I generated the training data from a large set of natural images. As natural images
do not vary randomly but most of the time smoothly, correlations will be found among
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non-shared regions as well. Clearly, the distribution of the canonical correlations
depend on the statistics of the source signal. For example, if a transformation would be
learnt on, say, white noise images, then the correlations would be zero for all non-shared
dimensions, as a white noise signal has zero cross correlation by definition. However,
this can only be seen when the transformation is learnt on a very large dataset, such
that the empirical cross correlations completely vanish.

In Fig. 6.11, I visualise the canonical correlations for the split and mirror transforma-
tions. As these transformations are again full permutations, the canonical correlations
are very similar to those of the 90 degree rotation.

Let us now regard the canonical correlations for nonlinear transformations of the input
data, as visualised in Fig. 6.12. For the noise free case, we see a clear difference in the
behaviour of the correlations, when compared to those of the linear transformations: The
correlations for the noise free case decline over the shared dimensions. While the decline
is very small for the scaling transformation and the nonlinear scaling in x direction, the
plots for the ’foveated’ transformation clearly show a nonlinear decline over the shared
dimensions. However, when noise is added to the training data, the qualitative course
of the correlations is similar to the ones of the linear transformations. As real world
training data will always contain noise, we expect the correlations to decline nonlinearly
in practice.

I am now interested in identifying the shared/non-shared dimensions. As the correla-
tions are given in canonical coordinates, there is no direct 1-to-1 mapping to the original
coordinates (=pixels). Therefore, I will regard the summed energy filters as described
in the next section.
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Figure 6.10: Canonical correlations for translated and rotated views: (within each plot) Each
curve shows the canonical correlation for a specific signal noise level σ = {0, 1, 2, 4, 6, 9} under an
i.i.d. zero-mean Gaussian noise model. Similar results are obtained for other types of transformations.
See text for details. Figure only interpretable when viewed in colour.
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Figure 6.11: Canonical correlations for full permutations: (within each plot) Each curve shows
the canonical correlation for a specific signal noise level σ = {0, 1, 2, 4, 6, 9} under an i.i.d. zero-mean
Gaussian noise model. Similar results are obtained for other types of transformations. See text for
details. Figure only interpretable when viewed in colour.
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Figure 6.12: Canonical correlations for nonlinear transformations: (within each plot) Each curve
shows the canonical correlation for a specific signal noise level σ = {0, 1, 2, 4, 6, 9} under an i.i.d.
zero-mean Gaussian noise model. Similar results are obtained for other types of transformations. See
text for details. Figure only interpretable when viewed in colour.
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6.5.3 Inferring Shared Dimensions

While the rank of the shared signal indicates the number of pixels (dimensions) which
are shared among both views, there is no direct way to identify those pixels. This is due
to the fact that a CCA basis vector is not to be understood as a mapping from one pixel
to another, but that the basis vector may spend energy over the whole spatial domain.
In order to infer the common ’footprint’ of the shared signal in the original coordinates,
I propose to analyse where the basis vectors spend energy.

Let Un = [u1, ..,un] and Vn = [v1, ..,vn] be matrices consisting of the first n basis
vectors of bases U and V, respectively. I define the summed energy filter enU and enV
for both bases U and V as:

enU = diag{UnU
T
n}, (6.27)

enV = diag{VnV
T
n }. (6.28)

Then, enU and enV will contain the sum of the squared filter weights (=energy) per
dimension. If n is set to the true rank of the shared signal, one observes that the basis
vectors spend energy only among the shared dimensions. Due to numerical inaccuracies,
basis vectors may spend small amounts of energy within non-shared regions as well.

For an intuitive understanding of the summed energy filters, regard Fig. 6.13. The
figure shows the first and last 3 basis vectors, as well as enU and enV for a translation
transformation by dx = 3 and dy = 7 pixels. The summed energy filters are shown
for n = 231 (true rank of the shared signal) and n = 441 (all basis vectors). It can
be seen that the first 3 filters spend energy within shared dimensions and no energy
in non-shared regions (=grey areas). The last 3 basis vectors spend energy in non-
shared dimensions as expected. When the summed filters are determined up to the true
rank of the shared signal, the shared and non-shared dimensions are clearly separated
(black/white) while they merge when all filters are summed.

In order to estimate the true rank of the shared signal, I regard the first and second
order derivative of the canonical correlations curve, or rather the discrete approximation
of these. Strictly speaking, I regard the difference quotient of first and second order of
the canonical correlation curve as it is a discrete function.

Recall that my empirical results suggested that the correlations drop nonlinearly in
shared dimensions and linearly in non-shared dimensions, where the coordinate of the
inflection point of the correlation curve marks the true rank. Figure 6.14 visualises
the first and second order derivative of the canonical correlation curve for rotations,
translations and the mirror transformation. For the 90 degree rotation and the mirror
transformations, the derivatives are close to 0 over the whole domain. This is to be
expected, as the shared signal is of full rank (cf. Sec. 6.5.2).

For the remaining rotations and translation transformations, we see that the first
derivative has a global minimum, and that the second derivative changes its sign, thus
indicating an inflection point. Throughout these plots, we may detect a global minimum
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6.5 Learning Global Transformations on Natural Images

Figure 6.13: Energy distribution among dimensions for the noise free case: (first to third
column) First three basis vectors with maximum canonical correlation for (top) left view and (bottom)
right view. (fourth column) Summed energy filters enU and enV which only spend energy among the
shared dimensions. (fifth to seventh column) Last three basis vectors with small canonical correlation
and summed energy filters. See text for details.

in the first derivative and a sign change in the second derivative up to a noise level of
σ = 4. For larger noise levels the plots need to be regarded on a different scale.

Figure 6.15 visualises the first and second order derivative of the canonical correlation
curve for nonlinear transformations of the training data for which we see similar results
as for the linear transformations. Note that the plot limits for the ’foveated’ transfor-
mation are much smaller than for the other transformations, in order to make the plot
interpretable. In fact, the derivatives appear very noisy, and it is questionable whether
we may determine the true rank for these kind of transformations in practice. However,
we may still estimate a conservative lower bound on the number of shared dimensions,
which suffices to at least get an approximation of the spatial footprint of the shared
signal.

Figure 6.16 visualises the summed energy filters for various transformations. The rank
of the shared signal, up to which the filters are summed, has been determined according
to the global minima of the first derivative of the canonical correlation curve. It can be
seen that we may infer the spatial footprint of the shared signal based on the proposed
approach.

As will be shown in the following, if we apply a learnt transformation based on the
full CCA bases (including the ones which spend energy in the non-shared dimensions),
an interesting side effect is that the predictors (Eqs. 6.25,6.26) effectively extrapolate
within the non-shared regions.
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Figure 6.14: Approximated first and second order derivative of the canonical correlation
curve: for rotations, translations and general permutations. See text for details. Figure only in-
terpretable when viewed in colour.
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Figure 6.15: Approximated first and second order derivative of the canonical correlation
curve: for nonlinear transformations. See text for details. Figure only interpretable when viewed in
colour.
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dx = 3, dy = 5 dx = 5 dy = 7

enU enV enU enV enU enV

α = 37 α = 217 α = 37, dx = 8

enU enV enU enV enU enV

γ = 2 nonlinear nonlinear x

enU enV enU enV enU enV

Figure 6.16: Summed energy filters up to estimated signal rank: Summed energy filters enU and
enV summed up to the estimated rank of the shared signal for various transformations. See text for
details.
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6.5.4 Predictions

So far we have seen that CCA represents spatial transformations by means of trans-
formation specific basis vectors. Based on the canonical correlations, we may infer the
rank of the shared signal and determine the spatial footprint of the shared signal.

Next, I will apply the learnt transformations, based on the MMSE estimators given
in Eq. 6.25, and Eq. 6.26. It is important to note that I apply the transformations to
previously unseen data. The only assumption I make is that the image statistics of the
training data and previously unseen data are similar. This is the case here, as I learn and
apply the transformations based on natural images. In the following, I apply the learnt
transformations to face images of the Olivetti database (ATT-Laboratories-Cambridge
n.d.). For each transformation, I show examples for the predictions of x̂ and ŷ when
interpreting the given input image as y or x, respectively.

Figures 6.17 and 6.18 show predictions for rotation and translation transformations.
In the upper half images of the figure, it can be seen that the predicted images are
non-zero in the non-shared dimensions. It is important to note that this is actually not
noise, but that the model extrapolates within non shared dimensions. This becomes
clearer when we regard input images with a black border. This is shown in the lower
half images of Fig. 6.17 and Fig. 6.18, where I set a two pixel wide black border around
the input images. It can be seen that the non-shared regions are not filled with noise
but by the texture close to the image borders (= homogeneous black) as expected.

From the predictions of the rotation transformations, it can be seen that this type
of transformation is considerable more difficult to represent, as there is no 1-to-1 corre-
spondence between the pixels and the model needs to interpolate.

Figure 6.19 shows predictions for the split and mirror transformations. As all these
transformations are full permutations, the predictions are very accurate. It is interesting
to note that the left and right predictions are identical. This is to be expected, as the
input image always represents a frontal (non-split/mirrored) face.

Figure 6.20 shows predictions for nonlinear transformations. Note how the model is
able to zoom in and zoom out the input images. The foveated transformation, especially
the right predictions, clearly show that the method is able to represent nonlinear trans-
formations. The left predictions show the nonlinear behaviour as well, but are harder
to interpret. Again, we see that the model extrapolates in the non-shared regions only
when there is evidence that the image extends over the borders.
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original α = 90 α = 37 α = 217

input Fxy Fyx Fxy Fyx Fxy Fyx

Figure 6.17: Learnt rotations applied to previously unseen data: See text for details.
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original dx = 5 dy = 7 dx = 3, dy = 5 α = 37, dx = 8

input Fxy Fyx Fxy Fyx Fxy Fyx Fxy Fyx

Figure 6.18: Learnt translations and rotations applied to previously unseen data: See text for
details.
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original vertical split mirror quarter split

input Fxy Fyx Fxy Fyx Fxy Fyx

Figure 6.19: Learnt permutations applied to previously unseen data: See text for details.
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original γ = 2 nonlinear nonlinear nonlinear x

input Fxy Fyx Fxy Fyx Fxy Fyx Fxy Fyx

Figure 6.20: Learnt nonlinear transformations applied to previously unseen data: See text for
details.
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6.6 Correspondence Priors for Binocular Camera Setups

Within the previous sections, we have seen that CCA is able to extract and represent
linear and nonlinear spatial transformations by means of two sets of basis vectors. While
the experiments were based on manually generated training data, I will now present a
CCA based approach to estimate correspondence priors in real-world binocular camera
setups.

My approach is split into two stages. Within the first stage, I learn the inter-image
transformation for a pair of cameras Ci and Cj (with fixed relative orientation) based on
CCA. This analysis usually has to be done in a multi-scale framework, depending on
the given image resolution, as applying CCA directly to full resolution images may be
computationally prohibitive. In the second stage, I employ the learnt transformation
and predict for a given pixel in Ci its corresponding region within Cj . I denote these
regions as correspondence prior.

6.6.1 Method

It may appear more as a theoretical possibility than as an actually feasible approach
to learn the transformation between paired data via CCA. Applying CCA directly on
natural images, even of rather low spatial resolutions, say, above 256 × 256 pixels,
is computationally prohibitive. While online/recursive algorithms for CCA exist (Ali
Pezeshki et al. 2003), I follow a different route; I apply CCA within a multi-resolution
framework, where the transformation between the views Ci and Cj of a binocular image
stream is determined on a coarse scale only. Having learnt the transformation on the
coarse scale, I can predict for a given pixel on the fine scale in Ci, which pixel in a low
resolution version of Cj corresponds to it. Subsequently, the predicted correspondence
is reprojected to the original resolution. The reprojection obviously results in a loss
of resolution (cf. TCA on the pyramid, Sec. 3.7), and we cannot find pixel-to-pixel
correspondences on the fine scale. Instead, I determine a region which contains the true
correspondence with high probability. This region can compactly be described by means
of spatial moments (second order statistics) and will be denoted as correspondence prior.

6.6.2 Learning the Inter-Image Transformation

In the first phase, I learn the transformation between Ci and Cj as follows. Let T
be the number of images in a temporal segment of the binocular image stream. The
algorithm starts with generating the two data matrices X ∈ RN×T and Y ∈ RN×T ,
where each column in X and Y correspond to a subsampled version of the original image,
respectively. During subsampling, I keep the aspect ratio of the original resolution such
that R

γ ·
C
γ = N , where γ is the subsampling factor.
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Figure 6.21: Learning transformations in real world setups: First 9 pairs of basis vectors deter-
mined by CCA for each of the three sequences (GUBo1616, GUBo1606 and GUCar) used within the
experiments. See text for details.

Figure 6.22: Generation of correspondence priors: Visual description of how correspondence priors
are generated, once the transformation between two views has been learnt via CCA. See Sec. 6.6.2.1
for details. Best viewed in colour.

6.6.2.1 Prediction

Within the multi-resolution framework, I use the predictor equations from Sec. 6.4 to
generate correspondence priors as follows. Let (x, y) be the spatial coordinates of a
pixel in C0i , where the superscript 0 denotes the original resolution. Next, determine the
pixels’ coordinates within the low resolution as (u, v) = (xγ ,

y
γ ), and generate a binary

image I1i ∈ {0, 1}
R
γ
×C
γ of the same size as the low resolution, where the pixel at (u, v)

is set to 1 (see step 1 in Fig. 6.22). Then apply the transformation learnt by CCA to

the binary image via Eq. 6.25 and obtain the predicted image I1j ∈ R
R
γ
×C
γ . Obviously,

when there is a one-to-one pixel correspondence and the transformation has perfectly
been determined, the predicted image will be binary again, where a single pixel is set
to 1, marking the corresponding pixel. However, this is only the case when the hidden
transformation is a permutation. This will only rarely be the case for real world setups
and we typically obtain predictions that encode regions of high probability containing
the corresponding pixel (see step 2 in Fig. 6.22). Interpreting the predicted images as
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Figure 6.23: Canonical correlation curves and corresponding derivatives: for sequences
GUBo1616, GUBo1606 and GUCar. Figure only interpretable when viewed in colour.

an empirical bivariate correspondence distribution over the spatial image coordinates, I
encode the prediction by means of a 2 × 2 covariance matrix Cp (cf. Sec. 3.5). Given
that the eigenvalues of Cp are both small, I consider a correspondence to exist. Finally,
the correspondence prior to the pixel at (x, y) ∈ C0i in the second view is given as the
covariance error ellipse of Cp, projected onto I0j (see step 3 in Fig. 6.22).

Using the proposed method, I learn transformations for sequences GUBo1616, GUBo1606
and GUCar. Recall that these sequences have a spatial resolution of 480× 640 pixels. I
learn the transformations as described in 6.6.2 using a subsampling factor of 16 (with
bicubic interpolation), i.e., I apply CCA on data matrices X,Y of size (30 ·40)×10, 000.
I perform CCA via SVD on the data matrices which takes roughly 7 seconds on a single
2.6 GHz CPU.

Figure 6.21 shows the first 9 pairs of CCA basis vectors for each of the scenes. It can
be seen that for all of the three setups, the basis vectors are not random but develop
a structure that is characteristic for the setup. However, the basis vectors appear
to be substantially different from the ones presented in Sec. 6.5.1. Figure 6.23 shows
the canonical correlations and the respective first derivatives. Figure 6.24 visualises
the log of the respective summed energy filters. The plots of the canonical correlations
for GUBo1616 and GUBo1606 are similar to the ones of the nonlinear transformations
shown in Sec. 6.5.2. The correlations for GUBo1616 decline slower than for GUBo1606,
indicating that the shared signal for sequence GUBo1616 has a larger spatial footprint,
which indeed is the case. The correlations for sequence GUCar are more similar to the
translation/rotation transformations, and indicate a large overlap of the input views, as
is the case for this sequence. The summed energy filters in Fig. 6.24 are determined
as described in Sec. 6.5.3. The filters may appear counter intuitive when compared to
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GUBo1616 GUBo1606 GUCar

enU enU enU

enV enV enV

Figure 6.24: Summed energy filters: for sequences GUBo1616, GUBo1606 and GUCar. See text for
details. Figure only interpretable when viewed in colour.

the ones in Sec. 6.5.3. In fact, we may not directly read off shared and non-shared
dimensions. I believe this is due to the fact that the training data sample the spatial
domain relatively sparse, compared to the hand generated data. Then, the static parts
of the scene seem to dominate the overall structure of the summed energy filter. This
can bee seen from the dark red regions of the filters. Regard the summed energy filters
for GUCar. Here, the engine hood is a constant structure and hence dominates the filter.
In order to find overlapping regions, I do not regard the summed energy filters but only
regard the correspondence priors as described in the following.

Finding Correspondence Regions For a pixel location in Ci, I generate a corre-
spondence prior in Cj (and vice versa), as explained in Sec. 6.6.2.1. Figure 6.25 shows
examples of such correspondence priors for sequences GUBo1616, GUBo1606 and GUCar.
It is important to note that correspondence priors can also be generated for pixels which
lie within i) static parts of the scene, but more importantly ii) for pixels which lie within
homogeneous parts of the scene. This can be seen for the selected pixel number 2 in
GUBo1616 or pixel number 4 in GUCar in Fig. 6.25. Obviously, this is possible since the
model learns a global transformation between the views.
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The correspondence regions shown in Fig. 6.25 are the covariance error ellipses for a
confidence level of 99% containing the true correspondence. If a pixel is not visible
within both views, the correspondence prior exhibits high uncertainty, indicated by a
large error ellipse, as both eigenvalues of the priors’ covariance matrix would be large.

Finding Overlapping Regions As the approach returns correspondence priors with
a confidence measure given by a covariance matrix, we can easily find regions visible
within both views as follows: For all pixels of one of the two views we generate cor-
respondence priors and store the sum of the eigenvalues of the associated covariance
matrices. Observing that the correspondence prior will be the same for all pixels on the
original scale which fall within the same pixel on the subsampled view, we do not have to
compute R ·C correspondence priors but only R

γ ·
C
γ . This is simply the number of pixels

of the subsampled view. Finally, we obtain a confidence map of the size of the original
resolution, where low values indicate high confidence in that there is a corresponding
pixel in the second view.

Figure 6.26 shows such confidence maps for all of the three camera setups. It can be
seen that the proposed approach can find overlapping regions within binocular camera
setups even when the views are heavily twisted and considerably differ in scale.
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Figure 6.25: Correspondence priors for real world setups: Within each row for sequences
GUBo1616, GUBo1606 and GUCar: for selected pixels within the first view (left), regions of high
probability containing the true corresponding pixel in second view (right) are determined based on
the proposed approach. See Fig. 6.22 and text for details. Best viewed in colour.
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Figure 6.26: Correspondence maps for real world setups: Within each column for sequences
GUBo1616, GUBo1606 and GUCar: (left) left and (right) right view of the binocular camera setup
overlaid with a confidence map encoding regions of high probability of being visible in both views.
Regions coloured in shades of purple have a high probability of not being visible in the opposite view.
See text for details. Best viewed in colour.
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6.7 Learning Multiple Transformations

As has been discussed in Sec. 6.2, the standard CCA model can only learn and represent
a single global transformation. If CCA is applied to a dataset containing multiple
transformations, the CCA basis vectors turn into an invariant representation of the
data under the given classes of transformations. This is shown exemplarily in Fig.
6.27. The basis vectors shown were obtained for a dataset containing multiple rotation
and translation transformations, respectively. As can be seen, the filters develop a
transformation invariant representation.

In the following, I present an EM/k-means style algorithm, which allows to learn
multiple transformations based on a mixture of independent CCA models. Certainly, I
am not the first to investigate CCA mixture models, e.g., in (Viinikanoja et al. 2010), a
variational Bayesian CCA mixture model is presented. An algorithm similar to the ones
presented by me is given in (Fern et al. 2005) for an application in the earth science
community. However, their distance measure used to assign data points to CCA experts
differs from mine, as will be discussed in the following.

6.7.1 Approach

Assume we are given two data matrices X,Y of N vectorised training images. Each pair
of images is assumed to be related by one out of K hidden transformations F k

xy, k =
1, ..,K, according to Eq. 6.6. My goal is to learn K independent CCA models, each of
which is an expert in explaining transformations F k

yx and F k
xy.

The n-th image pair is assigned to the expert minimising the expected squared error
between the input images xi and yi and their predictions x̂i and ŷi according to:

k = argmin
k
||xn − x̂n||22 + ||yn − ŷn||22,

= argmin
k
||xn − F k

xyyn||22 + ||yn − F k
yxxn||22. (6.29)

Based on Eq. 6.29 we may now define the energy function to be minimised as:

Q =
∑
n

∑
k

γnk

{
||xn − F k

xyyn||22 + ||yn − F k
yxxn||22

}
. (6.30)

Here, γnk is a binary variable which is 1 iff the n-th image pair is assigned to expert
k. Transformations F k

xy and F k
yx are determined as the MMSE estimators given in Eq.

6.25 and Eq. 6.26. This is in contrast to the work by (ibid.), where per class linear
regression models are determined in canonical coordinates to perform the assignment.

We may minimise Eq. 6.30 based on the usual k-means style iterative scheme as
follows (cf. (Bishop 2006)). Initially, all image pairs are assigned randomly to one out
of the k experts. Then, in the first phase, each of the k CCA models is trained on its
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multiple rotations multiple translations

Figure 6.27: Transformation invariant basis: CCA basis vectors obtained for data sets containing
multiple transformations. See text for details.

assigned image pairs. In the second phase, each image pair is reassigned to the expert
which minimises Eq. 6.30. This scheme is repeated until i) no image pairs are reassigned
or ii) the energy function does not further decreases than a suitable small threshold ε.
Clearly, the estimated minimum is likely to be a local minimum, as the optimisation
scheme does not guarantee to find the global minimum.

In Fig. 6.28, Fig. 6.29 and Fig. 6.30, I show results for splitting various trans-
formations. It can be seen that the proposed method is able to extract the different
classes of transformations. I have found that the scheme is sensitive to the initial as-
signment of image pairs to CCA experts, and the splitting not always succeeds (=weak
local minimum). However, it remains future work to explore the splitting of multiple
transformations via CCA in more detail.
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Figure 6.28: Splitting transformations: Splitting a translation and rotation transformation

211



6 Learning Global Mappings

expert 1 @ iteration 1 expert 1 @ iteration 9

expert 2 @ iteration 1 expert 2 @ iteration 9

canonical correlations @ iteration 1 canonical correlations @ iteration 9

#dimension

ca
no

ni
ca

l c
or

re
la

tio
n

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1
expert 1
expert 2

#dimension

ca
no

ni
ca

l c
or

re
la

tio
n

 

 

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

expert 1

expert 2

Figure 6.29: Splitting transformations: Splitting a translation and a nonlinear transformation.
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6.7 Learning Multiple Transformations
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Figure 6.30: Splitting transformations: Splitting two translations and one rotation transformation.
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6 Learning Global Mappings

6.8 Summary and Conclusion

I presented a feature free approach to learn latent global mappings between pairs of
views, which is based on the method of Canonical Correlation Analysis (CCA). Map-
pings are learnt and represented by means of two sets of basis vectors. In contrast to
a classic parametric approach, in which parameters of a transformation are estimated,
say, a rotation angle, I learn the transformation itself.

I assume that the training image pairs are related by a single fixed transformation.
Only then the CCA representation will encode the hidden transformation. If the training
data contains multiple different transformations (of the same class, say, rotations) the
CCA representation turns into a transformation invariant representation, i.e., the eigen-
functions of the transformation operator. Based on a straight forward mixture model of
CCA experts, I showed that multiple transformations contained within a single training
data set may be split and learnt.

A learnt transformation can be applied to previously unseen data via a MMSE esti-
mator. Applying a learnt transformation in this way is a linear operation. However, the
basis vectors obtained by CCA may encode arbitrary nonlinear transformations.

Experimental results validate the presented approach and show that rather simple
CCA-type processing structures are able to learn and represent general, nonlinear spatial
transformations in an unsupervised manner.
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7 Summary and Outlook

7.1 Summary

As we have seen, the correspondence problem is at the core of many low-level computer
vision tasks and is a precursor to high-level processes. The correspondence problem may
be studied locally or globally. In a local approach, individual pixel correspondences are
sought, while in a global approach a holistic mapping function is sought. In this thesis,
I introduced two approaches to learn local and global correspondence relations in an
unsupervised manner.

In the first part of the thesis, I proposed the method of Temporal Coincidence Analysis
(TCA) to learn pixel correspondences in binocular camera setups. The classic approach
is to compute pixel correspondences in two images, based on the spatial feature match-
ing pipeline. This pipeline consists of three stages: i) the detection of spatial keypoints
in both images ii) their description by means of a descriptor and iii) the matching of
keypoints across the views. In contrast, in TCA I only regard the temporal information
of single pixels. Based on the detection and matching of temporal events, I estimate a
correspondence distribution over a long image stream. Correspondences are never com-
puted explicitly, only the evidence for a correspondence relation by means of matched
events is collected over time. As we have seen, TCA is theoretically justified and is not
a heuristic; the learning scheme is derived as a statistical model for matching pairs of
independent signal channels. In this model, the basic principle of detecting and match-
ing temporal events in the grey value signal is cast as a temporal update scheme of an
associated posterior distribution. The posterior distribution may also be approximated
by replacing the posterior update with a simple threshold test. The correspondence
distribution then turns into and an accumulator array.

A pixel correspondence in the classic sense and the correspondence distribution which
my method learns are identical, given that the scene depth structure is approximately
static. If the scene depth varies, the correspondence may vary along the epipolar line.
While TCA has no build in knowledge about the epipolar geometry, the correspondence
distribution will encode parts of the epipolar ray, given that the scene depth is regularly
sampled.

I encode a correspondence distribution by means of a set of attributes. Among them,
the distribution’s first and second order statistics and its entropy. These attributes
allow to monitor the progress of the learning process and to assess the uncertainty
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about the correspondence estimate. These are important entities and allow to propagate
uncertainties to higher level processes which operate on the learnt correspondences.

As we have seen, TCA builds on the detection and matching of temporal events, which
are determined from the grey value signal of single pixels. As in any appearance based
approach, matching of events across different cameras may suffer from illumination
differences, different camera transfer functions etc.. I therefore model the Grey Value
Transfer Function (GVTF) which maps grey values observed in a camera Ci to its
corresponding grey value in a camera Cj . I proposed a method to learn the GVTF
from a set of learnt correspondences, which is robust to spatial uncertainties in the
correspondence estimates. To this end, a comparagram, i.e., a 2-D histogram of grey
values, extracted from corresponding pixels is build. As has been shown, it is important
to only add those grey value pairs to the comparagram for which the local signal around
the regarded pixels is rather homogeneous. Otherwise, even small inaccuracies in the
correspondence estimate may lead to severe outliers in the comparagram. The GVTF
is then estimated as a low order polynomial fitted to the data within the comparagram.

I demonstrated the applicability of TCA in a series of simulations as well as for real
world camera setups, both for stereo and motion correspondences. Regarding the stereo
case, it was shown that TCA can handle setups in which the camera views are translated
and/or rotated w.r.t. each other or show a large scale difference. The cameras may be
static or moving. The only assumption that is made is that the relative orientation of
the cameras is fixed and that the video streams are synchronised.

I showed that TCA can also learn the distribution of motion correspondences in
monocular video streams without computing the optical flow. I apply TCA as for the
stereo case without changing the learning process in any way. Experimental results val-
idate that TCA can learn motion correspondences for various camera setups, including
static and moving cameras. I demonstrated that a sparse set of learnt average motion
vectors can be interpolated by means of fitting the parameters of a bi-quadratic model
to the set of learnt average motion vectors. The scheme takes the uncertainties encoded
in the learnt correspondence distributions explicitly into account.

Besides average motion correspondences, TCA can also be used to infer global hidden
motion variables, e.g., the yaw rate of a moving camera. To this end, I pool the set of
matched events over many pixels lying approximately at infinity. The matched events
will then form a cluster, encoding the true yaw rate. Furthermore, I introduced a
mixture model of TCA experts, which is able to learn the characteristic motion maps
observed by a moving camera during left, right and forward motion.

I also showed that TCA is naturally applied in a coarse to fine manner on a, say,
Gaussian pyramid of the input video streams. Correspondence distributions are then
learnt on a coarse scale, allowing to limit the spatial extend of the distribution on a fine
scale. A correspondence learnt on a coarse scale can then be reprojected on the fine
scale to form a correspondence prior.
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In the second part of the thesis, I presented an approach to learn global image trans-
formations in an unsupervised manner. In a classic approach to determine global trans-
formations, usually the parameters of a specific class of transformations, say, rotations
are estimated based on a given set of spatial correspondences (features). A prominent
class of parametric models is given by the projective linear group. In contrast to this, I
present a feature free approach in which a transformation is not encoded by means of
a parametric model but by a mapping tensor which may represent arbitrary nonlinear
transformations. The approach is based on a method known as Canonical Correlation
Analysis (CCA). Given a large set of image pairs, which are related by a single fixed
transformation, I showed that CCA extracts pairs of basis vectors which encode the
sought transformation implicitly. The learnt transformation can be applied to previ-
ously unseen data based on a MMSE estimator. While this is a linear operation, the
learnt basis vectors may encode arbitrary nonlinear transformations.

A limitation of CCA is that only single transformations may be learnt. Due to the
lack of additional latent variables, CCA may not switch between several different trans-
formations. If the given training data contains multiple transformations of the same
class, the basis vectors extracted by CCA constitute an invariant basis for the respec-
tive transformation operator.

A further limitation of CCA is that it is not possible to directly infer the shared
signal, i.e., the parts of the signal which are visible within both views irrespective of
the transformation. In order to extract the spatial footprint of the shared signal, I
determine the summed energy filters.

I also demonstrated that CCA can be used to generate correspondence priors in real-
world binocular camera setups. To this end, I learn a global transformation between
the input views on a coarse scale, apply the learnt transformation to a binary image
marking the regarded pixel, apply the learnt transformation to the binary image and
finally reproject the predicted image to the fine scale of the second view.

To conclude, in this thesis I presented two learning based approaches addressing the
important correspondence problem in computer vision. Both approaches are unsuper-
vised and show that local and global correspondence relations can be learnt instead of
being computed.

7.2 Outlook

The methods presented in this thesis show that local and global correspondence relations
can be learnt unsupervised. My work somewhat contrasts the still lasting trend in
computer vision research to regard specific problems in a rather isolated setting based
on single images or short sequences. As an example, regard the Middlebury benchmark
(Baker et al. 2011). This is the de facto standard to benchmark stereo and optical flow
algorithms but neglects temporal information as it only operates on pairs of images.
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However, in multi-camera scenarios, e.g., in surveillance networks, in driver assistance
systems or robotics applications, very long image sequences are available. While we
may apply pure spatial approaches separately to each image pair in the image stream,
it seems to be a waste of information and computational resources not to make use
of the temporal regularities of natural video sequences. It should be noted that there
are benchmark suites with rather long image sequences compared to the Middlebury
benchmark, e.g., the KITTI benchmark suite (Geiger et al. 2012) (sequences with up to
several thousand frames) which contains renowned benchmark data for algorithms in
the area of driver assistance systems.

Clearly, there is a large compound of work in the field of spatiotemporal image anal-
ysis. However, I believe that processing of say, hours or days of video data makes it
necessary to develop new processing methodologies.

Of special interest are learning based approaches which are able to autonomously
adapt to the scenarios in which they are applied. This allows to build large scale
systems which simply cannot be parameterised due to their complexity. The approaches
developed in this thesis are a step towards the direction of autonomous learning systems.
I showed that correspondence relations can be learnt unsupervised, and correspondence
relations are the basis to many other vision problems.

Clearly, the methods proposed in this thesis can be explored further and can be
extended in many ways. Foremost, I believe that the combination of TCA with state-
of-the-art spatial feature based approaches is highly attractive. TCA could be used as
a prior generator, which learns the scene specific correspondence relations, which are
used by a spatial approach to constrain the search space.

In a robotics or automotive application, it would be interesting to combine the learning
of average motion maps with the robot’s/car’s ego-motion data. This allows to build
a model based on which we could predict the expected optical flow or the platform
motion. In turn, this allows to detect abnormal motion.

Further extensions of TCA include, among others, the automatic placement of seed
pixels, the automatic selection of the source signal noise level, the automatic selection
of the event threshold.

The mixture model of CCA experts could be extended and further analysed in order
to learn multiple global transformations at the same time.
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Appendix A

Video Sequences Overview

In this thesis, I will present results for various different image sequence data, which is
shortly presented here.

A.0.1 Binocular Sequences

See Figs. A.1 and A.3 for sample frames of the following sequences.

Sequence GUCar

• Setup: Moving cameras, mounted on top of a car. Baseline of roughly 30 cm.

• Camera settings: Uncalibrated views but same focal lengths, resolution of 640×
480 pixels @ 30 FPS, ≈ 50,000 frames in total.

• Scene content: The car drives through an urban environment and on a highway.

• Source: Recorded by our group.

Sequence GUBo1616

• Setup: Static cameras on a roof top. Cameras are rotated w.r.t. each other.

• Camera settings: Uncalibrated views with same focal lengths. Resolution of
640× 480 pixels @ 30 FPS, ≈ 12,000 frames in total.

• Scene content: Cameras observe a traffic junction.

• Source: Recorded by our group.

Sequence GUBo1606

• Setup: Static cameras on a roof top. Cameras are rotated w.r.t. each other, large
scale difference.
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Appendix A Video Sequences Overview

• Camera settings: Uncalibrated views with different focal lengths. Resolution of
640× 480 pixels @ 30 FPS, ≈ 12,000 frames in total.

• Scene content: Cameras observe a traffic junction.

• Source: Recorded by our group.

Sequence GUOmni

• Setup: Moving cameras mounted on a robot. Cameras are rotated w.r.t. each
other.

• Camera settings: Uncalibrated views with fisheye optics. Resolution of 640×480
pixels @ 30 FPS, ≈ 30,000 frames in total.

• Scene content: The robot drives through an office environment.

• Source: Recorded by our group.
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Figure A.1: Exemplary frames for binocular sequences: These sequences are used within Sec. 4
and Sec. 5. See text for details.
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A.0.2 Monocular Sequences

See Fig. A.2 for sample frames of the following sequences.

Sequence Forrest

• Setup: Static and moving camera.

• Camera settings: Uncalibrated view. Resolution of 1440 × 1080 pixels @ 24
FPS, ≈ 5,000 frames in total.

• Scene content: Trailer of the Forrest Gump movie.

• Source: c©Paramount Pictures.

Sequence Kitti-Odo

• Setup: Moving camera mounted on a car.

• Camera settings: Calibration data available but not used. Resolution of 1241×
376 pixels @ 30 FPS, ≈ 4,500 frames in total

• Scene content: Car drives through an urban environment.

• Source: KITTI Benchmark (ibid.).

Sequence Virat

• Setup: Static camera mounted on a roof top.

• Camera settings: Calibration data available but not used. Resolution of 1281×
789 pixels @ 25 FPS, ≈ 5,000 frames in total.

• Scene content: Camera observes a parking lot.

• Source: VIRAT Benchmark (Oh et al. 2011).
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Virat, static camera Forrest, static and moving camera
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Figure A.2: Exemplary frames for monocular sequences: These sequences are used within Sec.
4 and Sec. 5. See text for details.
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Figure A.3: Exemplary frames for binocular sequences: This sequence is used within Sec. 5. See
text for details.
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Mühlich, Matthias and Rudolf Mester.
”
Unbiased errors-in-variables estimation using

generalized eigensystem analysis“. In: European Conference on Computer Vision.
Springer, 2004 (cit. on p. 11).

Müller, Thomas, Clemens Rabe, and Uwe Franke.
”
Dense6D - Position und Bewegung

robust für jeden Bildpunkt“. In: Workshop Fahrerassistenzsysteme. 2011 (cit. on
p. 17).

Oh, Sangmin, Anthony Hoogs, Amitha Perera, Naresh Cuntoor, Chia-Chih Chen,
Jong Taek Lee, Saurajit Mukherjee, JK Aggarwal, Hyungtae Lee, Larry Davis,
et al.

”
A large-scale benchmark dataset for event recognition in surveillance

video“. In: Computer Vision and Pattern Recognition. 2011 (cit. on pp. 152, 222).

Papert, Seymour. The summer vision project. Tech. rep. MIT, 1966 (cit. on p. 1).

Pezeshki, A., L.L. Scharf, J.K. Thomas, and B.D. Van Veen.
”
Canonical coordinates

are the right coordinates for low-rank Gauss–Gauss detection and estimation“. In:
Signal Processing 54.12 (2006), pp. 4817–4820 (cit. on pp. ix, 173).

Pezeshki, Ali, Mahmood Azimi-Sadjadi, and Louis Scharf.
”
A network for recursive

extraction of canonical coordinates“. In: Neural Networks 16.5 (2003),
pp. 801–808 (cit. on pp. 178, 202).

235

http://www.robots.ox.ac.uk/~vgg/research/affine/


Bibliography

Porikli, Fatih.
”
Inter-camera color calibration by correlation model function“. In:

International Conference on Image Processing. Vol. 2. IEEE, 2003, pp. II–133
(cit. on p. 77).

Rai, Piyush and Hal Daumé.
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